Skip to main content
Log in

Albumin-Binding Aptamer Chimeras for Improved siRNA Bioavailability

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Short interfering RNAs (siRNAs) are potent nucleic acid-based drugs designed to target disease driving genes that may otherwise be undruggable with small molecules. However, therapeutic potential of siRNA in vivo is limited by poor pharmacokinetic properties, including rapid renal clearance and nuclease degradation. Backpacking on natural carriers such as albumin, which is present at high concentration and has a long half-life in serum, is an effective way to modify pharmacokinetics of biologic drugs that otherwise have poor bioavailability. In this work, we sought to develop albumin-binding aptamer-siRNA chimeras to improve the bioavailability of siRNA.

Methods

A Systematic Evolution of Ligands through Exponential Enrichment (SELEX) approach was used to obtain modified RNA-binding aptamers, which were then fused directly to siRNA via in vitro transcription. Molecular and pharmacokinetic properties of the aptamer-siRNA chimeras were subsequently measured in vitro and in vivo.

Results

In vitro assays show that albumin-binding aptamers are stable in serum while maintaining potent gene knockdown capabilities in the chimera format. In vivo, the absolute circulation half-life of the best-performing aptamer-siRNA chimera (Clone 1) was 1.6-fold higher than a scrambled aptamer chimera control.

Conclusions

Aptamer-siRNA chimeras exhibit improved bioavailability without compromising biological activity. Hence, this albumin-binding aptamer-siRNA chimera approach may be a promising strategy for drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Carthew, R. W., and E. J. Sontheimer. Origins and mechanisms of miRNAs and siRNAs. Cell. 136:642–655, 2009.

    Article  Google Scholar 

  2. Chen, S. H., and G. Zhaori. Potential clinical applications of siRNA technique: benefits and limitations. Eur. J. Clin. Invest. 41:221–232, 2011.

    Article  Google Scholar 

  3. Chernikov, I. V., V. V. Vlassov, and E. L. Chernolovskaya. Current development of siRNA bioconjugates: from research to the clinic. Front. Pharmacol. 10:444, 2019.

    Article  Google Scholar 

  4. Dana, H., et al. Molecular mechanisms and biological functions of siRNA. Int. J. Biomed. Sci. 13:48–57, 2017.

    Google Scholar 

  5. Dassie, J., and P. Giangrande. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat. Biotechnol. 27:839, 2009.

    Article  Google Scholar 

  6. Ellington, A. D., and J. W. Szostak. In vitro selection of RNA molecules that bind specific ligands. Nature. 346:818–822, 1990.

    Article  Google Scholar 

  7. Ganson, N. J., et al. Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J. Allergy Clin. Immunol. 137:1610–1613, 2016.

    Article  Google Scholar 

  8. Germer, K., M. Leonard, and X. Zhang. RNA aptamers and their therapeutic and diagnostic applications. Int. J. Biochem. Mol. Biol. 4:27–40, 2013.

    Google Scholar 

  9. Gruber, A. R., R. Lorenz, S. H. Bernhart, R. Neuböck, and I. L. Hofacker. The Vienna RNA Websuite. Nucleic Acids Res. 36:W70–W74, 2008.

    Article  Google Scholar 

  10. Gupta, N., D. B. Rai, A. K. Jangid, D. Pooja, and H. Kulhari. Nanomaterials-based siRNA delivery: routes of administration, hurdles and role of nanocarriers. Nanotechnol. Mod. Anim. Biotechnol. 67:114, 2019.

    Google Scholar 

  11. Hasegawa, H., N. Savory, K. Abe, and K. Ikebukuro. Methods for improving aptamer binding affinity. Molecules. 21:421, 2016.

    Article  Google Scholar 

  12. Hoogenboezem, E. N., and C. L. Duvall. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev. 130:73–89, 2018.

    Article  Google Scholar 

  13. Keefe, A. D., S. Pai, and A. Ellington. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9:537–550, 2010.

    Article  Google Scholar 

  14. Kong, H. Y., and J. Byun. Screening and characterization of a novel RNA aptamer that specifically binds to human prostatic acid phosphatase and human prostate cancer cells. Mol. Cells. 38:171–179, 2015.

    Article  Google Scholar 

  15. Kruspe, S., and P. H. Giangrande. Aptamer-siRNA chimeras: discovery, progress, and future prospects. Biomedicines. 5:45, 2017.

    Article  Google Scholar 

  16. Lakhin, A. V., V. Z. Tarantul, and L. V. Gening. Aptamers: problems, solutions and prospects. Acta Naturae. 5:34–43, 2013.

    Article  Google Scholar 

  17. Liu, H. Y., X. Yu, H. Liu, D. Wu, and J. X. She. Co-targeting EGFR and survivin with a bivalent aptamer-dual siRNA chimera effectively suppresses prostate cancer. Sci. Rep. 6:30346, 2016.

    Article  Google Scholar 

  18. Moreno, A., et al. Anti-PEG antibodies inhibit the anticoagulant activity of PEGylated aptamers. Cell Chem. Biol. 26:634–644, 2019.

    Article  Google Scholar 

  19. Neff, C. P., et al. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci. Transl. Med. 3:66ra66, 2011.

    Article  Google Scholar 

  20. Nimjee, S. M., R. R. White, R. C. Becker, and B. A. Sullenger. Aptamers as therapeutics. Annu. Rev. Pharmacol. Toxicol. 57:61–79, 2017.

    Article  Google Scholar 

  21. Pratt, A. J., and I. J. MacRae. The RNA-induced silencing complex: a versatile gene-silencing machine. J. Biol. Chem. 284:17897–17901, 2009.

    Article  Google Scholar 

  22. Rosch, J. C., D. A. Balikov, F. Gong, and E. S. Lippmann. A systematic evolution of ligands by exponential enrichment workflow with consolidated counterselection to efficiently isolate high-affinity aptamers. Eng. Rep. 2:e12089, 2020.

    Google Scholar 

  23. Rosch, J. C., E. H. Neal, D. A. Balikov, M. Rahim, and E. S. Lippmann. CRISPR-mediated isogenic cell-SELEX approach for generating highly specific aptamers against native membrane proteins. Cell Mol. Bioeng. 13:559–574, 2020.

    Article  Google Scholar 

  24. Sarett, S. M., et al. Lipophilic siRNA targets albumin in situ and promotes bioavailability, tumor penetration, and carrier-free gene silencing. Proc. Natl. Acad. Sci. USA. 114:E6490–E6497, 2017.

    Article  Google Scholar 

  25. Schubert, W., et al. Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J. Biol. Chem. 276:48619–48622, 2001.

    Article  Google Scholar 

  26. Sivakumar, P., S. Kim, H. C. Kang, and M. S. Shim. Targeted siRNA delivery using aptamer-siRNA chimeras and aptamer-conjugated nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11:e1543, 2019.

    Article  Google Scholar 

  27. Sleep, D., J. Cameron, and L. R. Evans. Albumin as a versatile platform for drug half-life extension. Biochim. Biophys. Acta. 1830:5526–5534, 2013.

    Article  Google Scholar 

  28. Spill, F., et al. Controlling uncertainty in aptamer selection. Proc. Natl. Acad. Sci. USA. 113:12076–12081, 2016.

    Article  Google Scholar 

  29. Stovall, G. M., et al. In vitro selection using modified or unnatural nucleotides. Curr. Protoc. Nucleic Acid Chem. 56:9.6.1-33, 2014.

    Article  Google Scholar 

  30. Takenaka, M., et al. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin. Bioorg. Med. Chem. Lett. 27:954–957, 2017.

    Article  Google Scholar 

  31. Tao, C., Y. J. Chuah, C. Xu, and D.-A. Wang. Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications. J. Mater. Chem. B. 7:357–367, 2019.

    Article  Google Scholar 

  32. Tatiparti, K., S. Sau, S. K. Kashaw, and A. K. Iyer. siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel). 7:77, 2017.

    Article  Google Scholar 

  33. Tuerk, C., and L. Gold. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 249:505, 1990.

    Article  Google Scholar 

  34. Zhang, Y., B. S. Lai, and M. Juhas. Recent advances in aptamer discovery and applications. Molecules. 24:941, 2019.

    Article  Google Scholar 

  35. Zhou, J., and J. J. Rossi. Therapeutic potential of aptamer-siRNA conjugates for treatment of HIV-1. BioDrugs. 26:393–400, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the Chan Zuckerberg Initiative (Grant No. 2018-191850 to ESL), the BrightFocus Foundation (Grant No. A20170945 to ESL), and National Institutes of Health Grants R01 CA224241 and R01 EB019409 (to CLD). ENH was supported by a National Science Foundation Graduate Research Fellowship.

Author Contributions

JCR, ENH, CLD, and ESL conceived the research plan. JCR, ENH, and AGS carried out experiments. All authors wrote, reviewed, and edited the manuscript.

Conflict of interest

The authors have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Craig L. Duvall or Ethan S. Lippmann.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosch, J.C., Hoogenboezem, E.N., Sorets, A.G. et al. Albumin-Binding Aptamer Chimeras for Improved siRNA Bioavailability. Cel. Mol. Bioeng. 15, 161–173 (2022). https://doi.org/10.1007/s12195-022-00718-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-022-00718-y

Keywords

Navigation