Skip to main content
Log in

Oxidative Stress Alters the Morphological Responses of Myoblasts to Single-Site Membrane Photoporation

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The responses of single cells to plasma membrane damage is critical to cell survival under adverse conditions and to many transfection protocols in genetic engineering. While the post-damage molecular responses have been much studied, the holistic morphological changes of damaged cells have received less attention. Here we document the post-damage morphological changes of the C2C12 myoblast cell bodies and nuclei after femtosecond laser photoporation targeted at the plasma membrane. One adverse environmental condition, namely oxidative stress, was also studied to investigate whether external environmental threats could affect the cellular responses to plasma membrane damage. The 3D characteristics data showed that in normal conditions, the cell bodies underwent significant shrinkage after single-site laser photoporation on the plasma membrane. However for the cells bearing hydrogen peroxide oxidative stress beforehand, the cell bodies showed significant swelling after laser photoporation. The post-damage morphological changes of single cells were more obvious after chronic oxidative exposure than that after acute ones. Interestingly, in both conditions, the 2D projection of nucleus apparently shrank after laser photoporation and distanced itself from the damage site. Our results suggest that the cells may experience significant multi-dimensional biophysical changes after single-site plasma membrane damage. These post-damage responses could be dramatically affected by oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

DM:

Dichroic mirror

EOM:

Electro-optic modulator

Fs:

Femtosecond

NA:

Numerical aperture

NCD:

The distance between the nucleus center and the membrane damage site

PP:

Photoporation

References

  1. Abreu-Blanco, M. T., J. M. Verboon, and S. M. Parkhurst. Single cell wound repair: Dealing with life’s little traumas. Bioarchitecture. 1(3):114–121, 2011.

    Article  Google Scholar 

  2. McNeil, P. L., and S. Ito. Gastrointestinal cell plasma membrane wounding and resealing in vivo. Gastroenterology. 96(5 Pt 1):1238–1248, 1989.

    Article  Google Scholar 

  3. Abreu-Blanco, M. T., J. J. Watts, J. M. Verboon, and S. M. Parkhurst. Cytoskeleton responses in wound repair. Cell. Mol. Life Sci. 69(15):2469–2483, 2012.

    Article  Google Scholar 

  4. McNeil, P. L., S. S. Vogel, K. Miyake, and M. Terasaki. Patching plasma membrane disruptions with cytoplasmic membrane. J. Cell Sci. 113(11):1891–1902, 2000.

    Google Scholar 

  5. Mandato, C. A., and W. M. Bement. Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds. J. Cell Biol. 154(4):785–798, 2001.

    Article  Google Scholar 

  6. Chen, X., J. M. Wan, and C. Alfred. Sonoporation as a cellular stress: induction of morphological repression and developmental delays. Ultrasound Med Biol. 39(6):1075–1086, 2013.

    Article  Google Scholar 

  7. Sonnemann, K. J., and W. M. Bement. Wound repair: toward understanding and integration of single-cell and multicellular wound responses. Annu. Rev. Cell Dev. Biol. 27:237, 2011.

    Article  Google Scholar 

  8. McNeil, P. L., and R. A. Steinhardt. Plasma membrane disruption: repair, prevention, adaptation. Annu. Rev. Cell Dev. Biol. 19(1):697–731, 2003.

    Article  Google Scholar 

  9. Bansal, D., K. Miyake, S. S. Vogel, S. Groh, C.-C. Chen, R. Williamson, et al. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature. 423(6936):168–172, 2003.

    Article  Google Scholar 

  10. Davies, K. J. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life. 50(4–5):279–289, 2000.

    Article  Google Scholar 

  11. Radak, Z., A. W. Taylor, H. Ohno, and S. Goto. Adaptation to exercise-induced oxidative stress: from muscle to brain. Exerc. Immunol. Rev. 7:90–107, 2001.

    Google Scholar 

  12. Urso, M. L., and P. M. Clarkson. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 189(1):41–54, 2003.

    Article  Google Scholar 

  13. Bonnard, C., A. Durand, S. Peyrol, E. Chanseaume, M.-A. Chauvin, B. Morio, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J. Clin. Investig. 118(2):789–800, 2008.

    Google Scholar 

  14. Aoi, W., Y. Naito, Y. Takanami, Y. Kawai, K. Sakuma, H. Ichikawa, et al. Oxidative stress and delayed-onset muscle damage after exercise. Free Radic. Biol. Med. 37(4):480–487, 2004.

    Article  Google Scholar 

  15. Powers, S. K., A. N. Kavazis, and J. M. McClung. Oxidative stress and disuse muscle atrophy. J. Appl. Physiol. 102(6):2389–2397, 2007.

    Article  Google Scholar 

  16. Aihara, H., and J. I. Miyazaki. Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16(9):867–870, 1998.

    Article  Google Scholar 

  17. Van Wamel, A., K. Kooiman, M. Harteveld, M. Emmer, J. Folkert, M. Versluis, et al. Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J. Control. Release 112(2):149–155, 2006.

    Article  Google Scholar 

  18. Malpeli, J. G. Reversible inactivation of subcortical sites by drug injection. J. Neurosci. Methods. 86(2):119–128, 1999.

    Article  Google Scholar 

  19. Stevenson, D., B. Agate, X. Tsampoula, P. Fischer, C. Brown, W. Sibbett, et al. Femtosecond optical transfection of cells: viability and efficiency. Opt. Express. 14(16):7125–7133, 2006.

    Article  Google Scholar 

  20. Antkowiak, M., M. L. Torres-Mapa, D. J. Stevenson, K. Dholakia, and F. J. Gunn-Moore. Femtosecond optical transfection of individual mammalian cells. Nat. Protoc. 8(6):1216–1233, 2013.

    Article  Google Scholar 

  21. Duan, X., K. T. Chan, K. K. Lee, and A. F. Mak. Oxidative stress and plasma membrane repair in single myoblasts after femtosecond laser photoporation. Ann. Biomed. Eng. 43(11):2735–2744, 2015.

    Article  Google Scholar 

  22. Siu, P. M., Y. Wang, and S. E. Alway. Apoptotic signaling induced by H2O2-mediated oxidative stress in differentiated C2C12 myotubes. Life Sci. 84(13):468–481, 2009.

    Article  Google Scholar 

  23. Wong, S. W., S. Sun, M. Cho, K. K. Lee, and F. Arthur. H2O2 exposure affects myotube stiffness and actin filament polymerization. Ann. Biomed. Eng. 43(5):1178–1188, 2015.

    Article  Google Scholar 

  24. Sun, S., S. Wong, A. Mak, and M. Cho. Impact of oxidative stress on cellular biomechanics and rho signaling in C2C12 myoblasts. J. Biomech. 47(15):3650–3656, 2014.

    Article  Google Scholar 

  25. Bement, W. M., C. A. Mandato, and M. N. Kirsch. Wound-induced assembly and closure of an actomyosin purse string in Xenopus oocytes. Curr. Biol. 9(11):579–587, 1999.

    Article  Google Scholar 

  26. Russo, J. M., P. Florian, L. Shen, W. V. Graham, M. S. Tretiakova, A. H. Gitter, et al. Distinct temporal-spatial roles for rho kinase and myosin light chain kinase in epithelial purse-string wound closure. Gastroenterology. 128(4):987–1001, 2005.

    Article  Google Scholar 

  27. Tamada, M., T. D. Perez, W. J. Nelson, and M. P. Sheetz. Two distinct modes of myosin assembly and dynamics during epithelial wound closure. J. Cell Biol. 176(1):27–33, 2007.

    Article  Google Scholar 

  28. Li, Y., D. Lovett, Q. Zhang, S. Neelam, R. A. Kuchibhotla, R. Zhu, et al. Moving cell boundaries drive nuclear shaping during cell spreading. Biophys. J. 109(4):670–686, 2015.

    Article  Google Scholar 

  29. Alam, S. G., D. Lovett, D. I. Kim, K. J. Roux, R. B. Dickinson, and T. P. Lele. The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts. J. Cell Sci. 128(10):1901–1911, 2015.

    Article  Google Scholar 

  30. Neelam S, Hayes PR, Zhang Q, Dickinson RB, and Lele TP. Vertical uniformity of cells and nuclei in epithelial monolayers. Scientific Reports. 2016;6.

  31. Liu, L., Q. Luo, J. Sun, and G. Song. Nucleus and nucleus-cytoskeleton connections in 3D cell migration. Exp. Cell Res. 348(1):56–65, 2016.

    Article  Google Scholar 

  32. Sieprath, T., R. Darwiche, and W. H. De Vos. Lamins as mediators of oxidative stress. Biochem. Biophys. Res. Commun. 421(4):635–639, 2012.

    Article  Google Scholar 

  33. Davidson, P. M., and J. Lammerding. Broken nuclei–lamins, nuclear mechanics, and disease. Trends Cell Biol. 24(4):247–256, 2014.

    Article  Google Scholar 

  34. Schreiber, K. H., and B. K. Kennedy. When lamins go bad: nuclear structure and disease. Cell. 152(6):1365–1375, 2013.

    Article  Google Scholar 

  35. Kumar, S., I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophy. J. 90(10):3762–3773, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Hong Kong Research Grants Council for the support of this research project (CUHK 415413) through its General Research Funds.

Conflict of interests

Xinxing Duan, Jennifer MF Wan and Arthur FT Mak declare that they have no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur F. T. Mak.

Additional information

Associate Editor Richard Dickinson oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 27167 kb)

Supplementary material 2 (DOCX 4595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Wan, J.M.F. & Mak, A.F.T. Oxidative Stress Alters the Morphological Responses of Myoblasts to Single-Site Membrane Photoporation. Cel. Mol. Bioeng. 10, 313–325 (2017). https://doi.org/10.1007/s12195-017-0488-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-017-0488-5

Keywords

Navigation