Skip to main content
Log in

A Mathematical Model for the Release of Peptide-Binding Drugs from Affinity Hydrogels

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

A mathematical model for the release of peptide-binding drugs from affinity hydrogels is analyzed in detail. The model is not specific to any particular peptide/drug/gel system, and can describe drug release from a large class of affinity systems. In many cases, it is shown that the model can be reduced to a coupled pair of nonlinear partial differential equations for the total drug and peptide. Quantitative information relating the rate of drug release to the values of the model parameters is presented. Numerical solutions are displayed that illustrate the rich variety of release behaviors the system is capable of exhibiting. Theoretical release profiles generated by the model are compared with experimental release data from three different studies, and good agreement is found. The development of reliable mathematical models for affinity hydrogels will provide useful design tools for these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell, 5th edition. New York: Garland Science, 2008

    Google Scholar 

  2. Bradbury, E. J., L. D. F. Moon, R. J. Popat, V. R. King, G. S. Bennett, P. N. Patel, J. W. Fawcett, and S. B. McMaho. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 416:636–640, 2002.

    Article  Google Scholar 

  3. Crank, J. The Mathematics of Diffusion, 2nd edition. Oxford: Oxford University Press, 1975.

  4. Fu, A. S., T. R. Thatiparti, G. M. Saidel, and H. A. von Recum. Experimental studies and modeling of drug release from a tunable affinity-based drug delivery platform. Ann. Biomed. Eng. 39:2466–2475, 2011.

    Article  Google Scholar 

  5. Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64:18–23, 2012.

    Article  Google Scholar 

  6. Hu, S. M. and S. Schmidt. Interactions in sequential diffusion processes in semiconductors. J. Appl. Phys. 39:4272, 1968.

    Article  Google Scholar 

  7. Hubbell, J. A. Matrix-bound growth factors in tissue repair. Swiss. Med. Wkly. 136:387–391, 2006.

    Google Scholar 

  8. King, J. R. and C. P. Please. Diffusion of dopant in crystalline silicon: an asymptotic analysis. IMA J. Appl. Math. 37:185–197, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  9. Lin, C. C. and K. S. Anseth. Controlling affinity binding with peptide-functionalized poly(ethylene glycol) hydrogels. Adv. Funct. Mater. 19:2325–2331, 2009.

    Article  Google Scholar 

  10. Lin, C. C., P. D. Boyer, A. A Aimetti, and K. S. Anseth. Regulating mcp-1 diffusion in affinity hydrogels for enhancing immuno-isolation. J. Control. Release 142:384–391, 2010.

    Article  Google Scholar 

  11. Lin, C. C., and A. T. Metters. Metal-chelating affinity hydrogels for sustained protein release. J. Biomed. Mater. Res. A 83A:954–964, 2007.

    Article  Google Scholar 

  12. Lin, C. C., A. T. Metters, and K. S. Anseth. Functional peg-peptide hydrogels to modulate local inflammation induced by the pro-inflammatory cytokine tnf\(\alpha\). Biomaterials. 30:4907–4914, 2009.

    Article  Google Scholar 

  13. Maxwell, D. J., B. C. Hicks, S. Parsons, and S. E. Sakiyama-Elbert, Development of rationally designed affinity-based drug delivery systems. Acta Biomater. 1:101–113, 2005.

    Article  Google Scholar 

  14. Maynard, H. D. and J. A. Hubbell. Discovery of a sulfated tetrapeptide that binds to vascular endothelial growth factor. Acta Biomater. 1:451–459, 2005.

    Article  Google Scholar 

  15. Mohtaram, N. K., A. Montgomery, and S. M. Willerth. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors. Biomed. Mater. 8(1–13):022001, 2013.

  16. Pakulska, M. M., K. Vulic, and M. S. Shoichet. Affinity-based release of chondroitinase ABC from a modified methylcellulose hydrogel. J. Control. Release 171:11–16, 2013.

    Article  Google Scholar 

  17. Please, C. P. & J. R. King. One- and two-dimensional nonlinear dopant diffusion in crystalline silicon - some analytical results. Solid State Electron. 31:299–305, 1988.

    Article  Google Scholar 

  18. Sakiyama-Elbert, S. E. and J. A. Hubbell, Development of fibrin derivatives for controlled release of heparin-binding growth factors. J. Control. Release 65:389–402, 2000.

    Article  Google Scholar 

  19. Shepard, J. A., P. J. Wesson, C. E. Wang, A. C. Stevans, S. J. Holland, A. Shikanov, B. A. Grzybowski, and L. D. Shea. Gene therapy vectors with enhanced transfection based on hydrogels modified with affinity peptides. Biomaterials. 32:5092–5099, 2011.

    Article  Google Scholar 

  20. Siepmann, J. and F. Siepmann. Mathematical modelling of drug delivery. Int. J. Pharm. 364:328–343, 2008.

    Article  Google Scholar 

  21. Tzafriri, A. R., A. D. Levin, and E. R. Edelman. Diffusion-limited binding explains binary dose response for local arterial and tumour drug delivery. Cell Prolif. 42:348–363, 2009.

    Article  Google Scholar 

  22. Varki, A., R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart, and M. E. Etzler. Essentials of Glycobiology, 2nd edition. New York: Cold Spring Harbor Laboratory Press, 2009.

    Google Scholar 

  23. Vo, T. T. N. Mathematical Analysis of Some Models for Drug Delivery, PhD thesis. Galway: National University of Ireland Galway, 2012.

  24. Vo, T. T. N. and M. G. Meere. Minimizing the passive release of heparin-binding growth factors from an affinity-based delivery system. Math. Med. Biol. 29:1–26, 2012.

    Article  MathSciNet  Google Scholar 

  25. Vo, T. T. N. and M. G. Meere. The mathematical modelling of affinity-based drug delivery systems. J. Coupled Syst. Multiscale Dyn. (submitted)

  26. Vo, T. T. N., R. Yang, Y. Rochev, and M. G. Meere. A mathematical model for drug delivery. Prog. Ind. Math. ECMI 2010:521–528, 2010.

    Google Scholar 

  27. Vulic, K., M. M. Pakulska, R. Sonthalia, A. Ramachandran, and M. S. Shoichet. Mathematical model accurately predicts protein release from an affinity-based delivery system. J. Control. Release. 197:69–77, 2015.

    Article  Google Scholar 

  28. Vulic, K. and M. S. Shoichet. Tunable growth factor delivery from injectable hydrogels for tissue engineering. J. Am. Chem. Soc. 134:882–885, 2012.

    Article  Google Scholar 

  29. Vulic, K. and M. S. Shoichet. Affinity-based drug delivery systems for tissue repair and regeneration. Biomacromolecules. 15:3867–3880, 2014.

    Article  Google Scholar 

  30. Wang, N. X. and H. A. von Recum. Affinity-based drug delivery. Macromol. Biosci. 11:321–332, 2011.

    Article  Google Scholar 

  31. Willerth, S. M., P. J. Johnson, D. J. Maxwell, S. R. Parsons, M. E. Doukas, and S. E. Sakiyama-Elbert. Rationally designed peptides for controlled release of nerve growth factor from fibrin matrices. J. Biomed. Mater. Res. A 80A:13–23, 2007.

    Article  Google Scholar 

  32. Wood, M. D., A. M. Moore, D. A. Hunter, S. Tuffaha, G. H. Borschel, S. E. Mackinnon, and S. E. Sakiyama-Elbert. Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater. 5:959–968, 2009.

    Article  Google Scholar 

  33. Wood, M. D. and S. E. Sakiyama-Elbert. Release rate controls biological activity of nerve growth factor released from fibrin matrices containing affinity-based delivery systems. J. Biomed. Mater. Res. A 84A:300–312, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the Mathematics Applications Consortium for Science and Industry (www.macsi.ul.ie) funded by the Science Foundation Ireland (SFI) Investigator Award 12/IA/1683. Dr Meere thanks NUI Galway for the award of a travel grant. We thank the referees for their helpful suggestions to improve the paper.

Conflict of interest

Tuoi T. N. Vo and Martin G. Meere declare that they have no conflicts of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Meere.

Additional information

Associate Editor James L. McGrath oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 38 kb)

Appendix

Appendix

In this appendix, we outline the asymptotic analysis of the initial boundary value problem (23) for the limit \(K_{{\text {b}}{\text{ P }}}\rightarrow \infty\). We begin by displaying the non-dimensional form for the equations. We recall that the non-dimensional variables are

$$\begin{aligned} \bar{x}=\frac{x}{L}, \quad \bar{t}=\frac{t}{(L^{2}/D_{\text{ G }})}, \quad \bar{c}_{\text{ G }}^{\text{ T }}=\frac{c_{\text{ G }}^{\text{ T }}}{c_{\text{ G }}^{\text{ T0 }}}, \quad \text {and} \quad \eta _{\text{ P/G }}= \frac{c_{\text{ P }}^{\text{ T0 }}}{c_{\text{ G }}^{\text{ T0 }}} \end{aligned}$$

and these lead to the following non-dimensional form (dropping the over-bars)

$$\begin{aligned} \frac{\partial c_{\text{ G }}^{\text{ T }}}{\partial t}&= \frac{\partial }{\partial x} \left( D_{\text{ GG }}^{\text{ T }} \left( c_{\text{ G }}^{\text{ T }}\right) \frac{\partial c_{\text{ G }}^{\text{ T }}}{\partial x} \right) , \nonumber \\ \frac{ \partial c_{\text{ G }}^{\text{ T }}}{\partial x}(0,t)&= 0 \quad \text{ for } t \ge 0, \nonumber \\ c_{\text{ G }}^{\text{ T }}(1,t)&= 0 \quad \text{ for } t \ge 0, \nonumber \\ c_{\text{ G }}^{\text{ T }}(x,0)&= 1 \quad \text{ for } 0<x<1, \end{aligned}$$
(26)

where

$$\begin{aligned} D_{\text{ GG }}^{\text{ T }}\left( c_{\text{ G }}^{\text{ T }}\right) = \frac{1}{2}\left( 1+\frac{K_{{\text {b}}{\text{ P }}} \left( c_{\text{ G }}^{\text{ T }}-\eta _{\text{ P/G }}\right) + \eta _{\text{ P/G }}}{\sqrt{\left[ K_{{\text {b}}{\text{ P }}} \left( c_{\text{ G }}^{\text{ T }} - \eta _{\text{ P/G }} \right) - \eta _{\text{ P/G }} \right] ^2 + 4 K_{{\text {b}}{\text{ P }}}\eta _{\text{ P/G }} c_{\text{ G }}^{\text{ T }}} } \right) . \end{aligned}$$
(27)

We shall discuss the case \(\eta _{\text{ P/G }}<1\), which corresponds to there being a higher concentration of drug than peptide in the gel initially. In the limit \(K_{{\text {b}}{\text{ P }}}\rightarrow \infty\), there are three time scales to consider, two of which we shall discuss.

Short Time Scale \(t=O(1)\)

In dimensional terms this corresponds to \(t=O(L^2/D_{\text{ G }})\), the diffusion time scale. This is the time scale over which the unbound drug fraction substantially out-diffuses from the gel. The asymptotic structure for \(t=O(1)\) as \(K_{{\text {b}}{\text{ P }}}\rightarrow \infty\) is depicted schematically in Fig. S1 in the Supplementary Material. It may be helpful to refer to this figure in the coming analysis.

In \(t=O(1)\), \(x=O(1)\), we pose \(c^{\text{ T }}_{\text{ G }}\sim c_{\text{ T0 }}^s(x,t)\) as \(K_{{\text {b}}{\text{ P }}} \rightarrow \infty\), to obtain the linear problem

$$\begin{aligned} \frac{\partial c_{\text{ T0 }}^s}{\partial t}&= \frac{\partial ^2 c_{\text{ T0 }}^s}{\partial x^2}, \nonumber \\ \frac{\partial c_{\text{ T0 }}^s}{\partial x}(0,t)&= 0 \quad \text { for }t \ge 0, \nonumber \\ c_{\text{ T0 }}^s(1,t)&= \eta _{\text{ P/G }} \quad \text { for } t \ge 0, \nonumber \\ c_{\text{ T0 }}^s (x,0)&=1 \quad \text { for }0<x<1. \end{aligned}$$
(28)

This linear problem can be solved using the method of separation of variables,3 to obtain

$$\begin{aligned} c_{\text{ T0 }}^s(x,t) = \eta _{\text{ P/G }}+ \frac{4(1-\eta _{\text{ P/G }})}{\pi } \sum \limits _{n = 1}^\infty {\frac{{(-1)^{n+1}}}{{2n-1}}} \exp \left( {\frac{{-(2n-1)^2 \pi ^2 t}}{4}}\right) \cos \left( {\frac{{(2n-1)\pi x}}{2}} \right) . \end{aligned}$$
(29)

The perfect sink boundary conditions in (26) are not met by this solution since \(c_{\text{ T0 }}^s(1,t)=\eta _{\text{ P/G }}\). The solution drops from approximately \(\eta _{\text{ P/G }}\) to small values over two asymptotically narrow regions near the interface \(x=1\), and we now discuss these.

\({x^*,t=O(1), \,x=1+K_{\text{b}}{\text{P}}^{-1/2}x^*}:\) Writing \(c^{\text{ T }}_{\text{ G }}(x,t)=\eta _{\text{ P/G }}+ K_{{\text {b}}{\text{ P }}}^{-1/2} c_{\text{ T }}^*(x^*,t)\) and posing \(c_{\text{ T }}^*\sim c_{\text{ T0 }}^*(x^*,t)\) in \(x^*,t = O(1)\) as \(K_{{\text {b}}{\text{ P }}}\rightarrow \infty\), one obtains

$$\begin{aligned} \frac{\partial }{\partial x^*} \left( D_{\text{ eff }} (c_{\text{ T0 }}^*) \frac{\partial c_{\text{ T0 }}^*}{\partial x^*}\right) =0, \end{aligned}$$

where

$$\begin{aligned} D_{\text{ eff }}(c_{\text{ T0 }}^*)= \frac{1}{2}\left( 1+ \frac{c_{\text{ T0 }}^*}{\sqrt{{c_{\text{ T0 }}^*}^2 + 4{\eta _{\text{ P/G }}}^2}} \right) . \end{aligned}$$

Integrating this equation twice gives

$$\begin{aligned} c_{\text{ T0 }}^{*}=\frac{\left( \gamma (t)x^* + \nu (t)\right) ^2- 4\eta _{\text{ P/G }}^2}{2\left( \gamma (t)x^* + \nu (t)\right) }, \end{aligned}$$

where \(\gamma (t), \nu (t)\) are determined by matching. Imposing \(|c_{\text{ T0 }}^{*}|\rightarrow \infty\) as \(x^*\rightarrow 0^-\) implies that \(\nu (t)=0\), and then

$$\begin{aligned} c_{\text{ T0 }}^{*}=\frac{\gamma (t)^2 x^{*2}- 4\eta _{\text{ P/G }}^2}{2\gamma (t) x^*}. \end{aligned}$$
(30)

The function \(\gamma (t)\) is determined by matching the drug fluxes in \(x=O(1)\) and \(x^*=O(1)\); we have that

$$\begin{aligned} \lim _{x \rightarrow 1^-} \left( -\frac{\partial c_{\text{ T0 }}^s}{\partial x}\right) = \lim _{x^* \rightarrow -\infty }\left( - D_{\text{ eff }}^s (c_{\text{ T0 }}^*) \frac{\partial c_{\text{ T0 }}^*}{\partial x^*}\right) , \end{aligned}$$

which immediately yields that

$$\begin{aligned} \gamma (t) = 4 (\eta _{\text{ P/G }}-1) \sum \limits _{n = 1}^\infty \exp \left( {\frac{{-(2n-1)^2\pi ^2 t}}{4}}\right) . \end{aligned}$$

In view of the behavior of (30) as \(x^*\rightarrow 0^-\), it is clear that another scaling is required, and we now discuss this.

\(\hat{x},t=O(1), \quad x=1+K_{{\text {b}}{\text{ P }}}^{-1}\hat{x}:\) In \(\hat{x}, t =O(1)\), we pose \(c^{\text{ T }}_{\text{ G }}\sim \hat{c}_{\text{ T0 }}(\hat{x},t)\) as \(K_{{\text {b}}{\text{ P }}}\rightarrow \infty\), to obtain

$$\begin{aligned} \frac{\partial }{\partial \hat{x}}\left( \frac{\eta _{\text{ P/G }}^2}{(\eta _{\text{ P/G }}-\hat{c}_{\text{ T0 }})^2} \frac{\partial \hat{c}_{\text{ T0 }}}{\partial \hat{x}}\right) =0. \end{aligned}$$

Integrating this expression twice and imposing \(\hat{c}_{\text{ T0 }} \rightarrow 0\) as \(\hat{x}\rightarrow 0^+\) gives

$$\begin{aligned} \hat{c}_{\text{ T0 }}=\frac{\eta _{\text{ P/G }} \delta (t)\hat{x}}{\delta (t)\hat{x}+\eta _{\text{ P/G }}}, \end{aligned}$$

where the function \(\delta (t)\) is now determined by matching drug fluxes in \(x^*=O(1)\) and \(\hat{x}=O(1)\). It is found that

$$\begin{aligned} \lim _{\hat{x}\rightarrow -\infty }\left( \frac{\eta _{\text{ P/G }}^2}{(\eta _{\text{ P/G }}- \hat{c}_{\text{ T0 }})^2} \frac{\partial \hat{c}_{\text{ T0 }}}{\partial \hat{x}}\right) =\lim _{x^* \rightarrow 0^-}\left( D_{\text{ eff }}(c_{\text{ T0 }}^*) \frac{\partial c_{\text{ T0 }}^*}{\partial x^*} \right) =\gamma (t), \end{aligned}$$

which gives

$$\begin{aligned} \delta (t)= \gamma (t), \end{aligned}$$

completing the asymptotic analysis for \(t=O(1)\).

Long Time Scale \(t=O(K_{{\text {b}}{\text{ P }}})\)

In dimensional terms, this corresponds to \(t=O(K_{{\text {b}}{\text{ P }}}L^2/D_{\text{ G }})\). This is the time scale over which the drug substantially exits the gel, and so is of importance from the point of view of applications.

Writing \(t=K_{{\text {b}}{\text{ P }}}T\), we pose \(c^{\text{ T }}_{\text{ G }}\sim c_{\text{ T0 }}^{\text{ L }}(x,T)\) in \(T=O(1)\), \(0<x<1\) as \(K_{{\text {b}}{\text{ P }}}\rightarrow \infty\) to obtain the leading order problem

$$\begin{aligned}&\frac{\partial c_{\text{ T0 }}^{\text{ L }}}{\partial T} = \frac{\partial }{\partial x} \left( \frac{\eta _{\text{ P/G }}^2}{(\eta _{\text{ P/G }} - c_{\text{ T0 }}^{\text{ L }})^2} \frac{\partial c_{\text{ T0 }}^{\text{ L }}}{\partial x}\right) , \quad 0<x<1, T>0, \nonumber \\&\frac{\partial c_{\text{ T0 }}^{\text{ L }}}{\partial x}(0,T)=0, \quad c_{\text{ T0 }}^{\text{ L }}(1,T)=0 \quad \text { for }T \ge 0, \nonumber \\&c_{\text{ T0 }}^{\text{ L }}(x, T)\rightarrow \eta _{\text{ P/G }} \quad \text { as }T\rightarrow 0, \quad 0<x<1. \end{aligned}$$
(31)

Here \(c_{\text{ T0 }}^{\text{ L }}\rightarrow 0\) as \(T\rightarrow \infty\), and so the drug is eliminated from the matrix on this time scale.

There is another time scale intermediate to \(t=O(1)\) and \(t=O(K_{{\text {b}}{\text{ P }}})\), but this case is of limited practical interest and is not discussed here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, T.T.N., Meere, M.G. A Mathematical Model for the Release of Peptide-Binding Drugs from Affinity Hydrogels. Cel. Mol. Bioeng. 8, 197–212 (2015). https://doi.org/10.1007/s12195-014-0375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0375-2

Keywords

Navigation