Skip to main content

Advertisement

Log in

Hydroxyapatite Modulates mRNA Expression Profiles in Cultured Osteocytes

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Osteocytes in vivo present a unique pattern of gene expression necessary for bone remodeling and mineral metabolism. Genes expressed in osteocytes such as Sost and fibroblast growth factor 23 (FGF23) are essential for load-driven bone formation and regulation of phosphate in the serum, respectively. However, their expression levels in standard cell cultures are significantly low and the mechanism of their transcriptional regulation is hardly examined. Since osteocytes reside in hydroxyapatite (HA)-surrounded lacunae, in this in vitro study we addressed a question whether they would exhibit mRNA expression profiles close to in vivo in the presence of HA. Our hypothesis was that HA would provide a three-dimensional (3D) growth environment important for the regulation of many of the osteocyte characteristic genes. To test this hypothesis, we grew MLO-A5 cells in a 3D collagen matrix with and without HA deposition and conducted a genome-wide expression analysis. The results revealed that deposition of HA markedly elevated the mRNA levels of Sost, dentin matrix protein 1 (DMP1), and FGF23. The microarray derived data indicated potential involvements of Wnt and PI3K signaling. Protein and mRNA expression analysis using pharmacological inhibitors such as LY294002 and pertussis toxin showed that HA-driven gene regulation was in part mediated by Akt in a PI3K pathway and G-protein linked receptors. In summary, we demonstrated herein that HA provided a growth environment that enabled osteocytes to stimulate their characteristic genes such as Sost, DMP1, and FGF23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aarden, E. M., E. H. Burger, and P. J. Mijwede. Function of osteocytes in bone. J. Cell Biochem. 55:287–299, 1994.

    Article  Google Scholar 

  2. Bonewald, L. F. Osteocytes as dynamic multifunctional cells. Ann. N.Y. Acad. Sci. 1116:281–290, 2007.

    Article  Google Scholar 

  3. Boukhechba, F., T. Balaguer, J. F. Michiels, K. Ackermann, D. Quincey, J. M. Bouler, W. Pyerin, G. F. Carle, and N. Rochet. Human primary osteocyte differentiation in a 3D culture system. J. Bone Miner. Res. 24:1927–1935, 2009.

    Article  Google Scholar 

  4. Cadigan, K. M., and R. Nusse. Wnt signaling: a common theme is animal development. Genes Develop. 11:3286–3305, 1997.

    Article  Google Scholar 

  5. Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296:1655–1657, 2002.

    Article  Google Scholar 

  6. Feng, J. Q., L. M. Ward, S. Liu, Y. Lu, Y. Xie, B. Yuan, X. Yu, F. Rauch, S. I. Davis, S. Zhang, H. Rios, M. K. Drezner, L. D. Quarles, L. F. Bonewald, and K. E. White. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat. Genet. 38:1310–1315, 2006.

    Article  Google Scholar 

  7. Franke, T. F., C. P. Hornik, L. Segev, G. A. Shostak, and C. Sugimoto. PI3K/Akt and apoptosis: size matters. Oncogene 22:8983–8998, 2003.

    Article  Google Scholar 

  8. Fujita, T., Y. Axzuma, R. Fukuyama, Y. Hattori, C. Yoshida, M. Koida, K. Ogita, and T. Komori. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J. Cell Biol. 166:85–95, 2004.

    Article  Google Scholar 

  9. Kato, Y., A. Boskey, L. Spevak, M. Dallas, M. Hori, and L. F. Bonewald. Establishment of an osteoid preosteocyte-like cell MLO-A5 that spontaneously mineralizes in culture. J. Bone Miner. Res. 16:1622–1633, 2001.

    Article  Google Scholar 

  10. Kost, C., W. Herzer, P. Li, and E. Jackson. Pertussis toxin-sensitive G-proteins and regulation of blood pressure in the spontaneously hypertensive rat. Clin. Exp. Pharmacol. Physiol. 26:449–455, 1999.

    Article  Google Scholar 

  11. Krishnan, V., H. U. Bryant, and O. A. MacDougald. Regulation of bone mass by Wnt signaling. J. Clin. Invest. 116:1202–1209, 2006.

    Article  Google Scholar 

  12. Ling, Y., H. F. Rios, E. R. Myers, Y. Lu, J. Q. Feng, and A. L. Boskey. DMP1 depletion decreases bone mineralization in vivo: an FTIR imaging analysis. J. Bone Miner. Res. 20:2169–2177, 2005.

    Article  Google Scholar 

  13. Liu, S., A. Gupta, and L. D. Quarles. Emerging role of fibroblast growth factor 23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization. Curr. Opin. Nephrol. Hypertens. 16:329–335, 2007.

    Article  Google Scholar 

  14. Martin, A., S. Liu, V. David, H. Li, A. Karydis, J. Q. Feng, and L. D. Quarles. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 25:2551–2562, 2011.

    Article  Google Scholar 

  15. Nampei, A., J. Hashimoto, K. Hayashida, H. Tsuboi, K. Shi, I. Tsuji, H. Miyashita, T. Yamada, N. Matsukawa, M. Matsumoto, S. Morimoto, T. Ogihara, T. Ochi, and H. Yoshikawa. Matrix extracellular phosphoglycoprotein (MEPE) is highly expressed in osteocytes in human bone. J. Bone Miner. Metab. 22:176–184, 2004.

    Article  Google Scholar 

  16. Noble, B. S., and J. Reeve. Osteocyte function, osteocyte death and bone fracture resistance. Mol. Cell Endocrinol. 159:7–13, 2000.

    Article  Google Scholar 

  17. Papanicolaou, S. E., R. J. Phipps, D. P. Fyhrie, and D. C. Genetos. Modulataion of sclerostin expression by mechanical loading and bone morphogenetic proteins in osteogenic cells. Biorheology 46:389–399, 2009.

    Google Scholar 

  18. Poole, K. E. S., R. L. Bezooijen, N. Loveridge, H. Hamersma, S. E. Papapoulos, C. W. Lowik, and J. Reeve. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 19:1842–1844, 2005.

    Google Scholar 

  19. Raheja, L. F., D. C. Genetos, and C. E. Yellowley. Hypoxic osteocytes recruit human MSCs through an OPN/CD44-mediated pathway. Biochem. Biophys. Res. Commun. 366:1061–1066, 2008.

    Article  Google Scholar 

  20. Robinson, J. A., M. Chatterjee-Kishore, P. J. Yaworsky, D. M. Cullen, W. Zhao, C. Li, Y. Kharode, L. Sauter, P. Babij, E. L. Brown, A. A. Hill, M. P. Akhter, M. L. Johnson, R. R. Recker, B. S. Komm, and F. J. Bex. Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J. Biol. Chem. 20:31720–31728, 2006.

    Article  Google Scholar 

  21. Robling, A. G., P. J. Niziolek, L. A. Baldridge, K. W. Condon, M. R. Allen, I. Alam, S. M. Mantila, J. Gluhak-Heinrich, T. M. Bellido, S. E. Harris, and C. H. Turner. Mechanical stimulation of bone in vivo reduces osteocyte expression of sost/sclerostin. J. Biol. Chem. 283:5866–5875, 2008.

    Article  Google Scholar 

  22. Sawakami, K., A. G. Robling, M. Ai, N. D. Pitner, D. Liu, S. J. Warden, J. Li, P. Maye, D. W. Rowe, R. L. Duncan, M. L. Warman, and C. H. Turner. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J. Biol. Chem. 281:2369–2711, 2006.

    Article  Google Scholar 

  23. Schmidmaier, G., B. Wildemann, J. Heeger, T. Gabelein, A. Flyvbjerg, H. J. Bail, and M. Raschke. Improvement of fracture healing by systemic administration of growth hormone and local application of insulin-like growth factor-1 and transforming growth factor-β1. Bone 31:165–172, 2002.

    Article  Google Scholar 

  24. Schneider, P., M. Meier, R. Wepf, and R. Muller. Towards quantitative 3D imaging of the osteocyte lacuna-canalicular network. Bone 47:848–858, 2010.

    Article  Google Scholar 

  25. Shimada, T., H. Hasegawa, Y. Yamazaki, T. Muto, R. Hino, Y. Takeuchi, T. Fujita, K. Nakahara, S. Fukumoto, and T. Yamashita. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 19:429–435, 2003.

    Article  Google Scholar 

  26. Tanaka, S. M., H. B. Sun, R. K. Roeder, D. B. Burr, C. H. Turner, and H. Yokota. Osteoblast responses to load-induced fluid flow for one hour in a three-dimensional porous matrix. Calcified Tissue Int. 76:261–271, 2005.

    Article  Google Scholar 

  27. Ubaidus, S., M. Li, S. Sultana, P. H. L. De Freitas, K. Oda, T. Maeda, R. Takagi, and N. Amizuka. FGF23 is mainly synthesized by osteocytes in the regularly distributed osteocytic lacunar canalicular system established after physiological bone remodeling. J. Electron Micros. 58:381–392, 2009.

    Article  Google Scholar 

  28. Vlahos, C. J., W. F. Matter, K. Y. Hui, and R. F. Brown. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269:5241–5248, 1994.

    Google Scholar 

  29. Warden, S. J., A. G. Roblong, M. S. Sanderrs, M. M. Bliziotes, and C. H. Turner. Inhibition of the serotonin (5-hydroxytryptamine) transporter reduces bone accrual during growth. Endocrinology 146:685–693, 2005.

    Article  Google Scholar 

  30. White, K. E., T. L. Larsson, and M. J. Econs. The role of specific genes implicated as circulating factors involved in normal and disordered phosphate homeostasis: frizzled related proteins-4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor 23. Endocr. Rev. 27:221–241, 2006.

    Article  Google Scholar 

  31. Xia, X., N. Batra, Q. Shi, L. F. Bonewald, E. Sprague, and J. X. Jiang. Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/β-catenin signaling. Mol. Cell Biol. 30:206–219, 2010.

    Article  Google Scholar 

  32. Yu, X., and K. E. White. FGF23 and disorders of phosphate homeostasis. Cytokine Growth Factor Rev. 16:221–232, 2005.

    Article  Google Scholar 

  33. Zhang, P., C. H. Turner, and H. Yokota. Joint loading-driven bone formation and signaling pathways predicted from genome-wide expression profiles. Bone 44:989–998, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate L.F. Bonewald for providing MLO-A5 osteocyte-like cells and M. Tawfik for technical support. This study was in part supported by NIH R01 AR052144.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Yokota.

Additional information

Associate Editor Christopher Rae Jacobs oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamamura, K., Zhao, L., Jiang, C. et al. Hydroxyapatite Modulates mRNA Expression Profiles in Cultured Osteocytes. Cel. Mol. Bioeng. 5, 217–226 (2012). https://doi.org/10.1007/s12195-012-0228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-012-0228-9

Keywords

Navigation