Skip to main content
Log in

Glycated Collagen Impairs Endothelial Cell Response to Cyclic Stretch

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

People with diabetes suffer from accelerated, diffuse atherosclerosis. Endothelial cells are dysfunctional in high glucose and on glycated collagen, but their response to mechanical stimuli in a high glucose environment has not been examined. The aim of this study was to determine the effect of glycated collagen on aortic endothelial cell response to strain. Porcine aortic endothelial cells seeded on either native or glycated collagen coated elastic substrates were exposed to 10% cyclic strain. While cells on native collagen aligned and formed actin stress fibers perpendicular to the stretch direction after 6 h, cells on glycated collagen did not align even after 12 h of cyclic strain. Impaired actin alignment could be related to diminished focal adhesion kinase phosphorylation in cells on glycated collagen. We further show that loss of mechanotransduction affects endothelial cell barrier function. Cells on glycated collagen substrates demonstrated a threefold increase in permeability with strain, whereas cell permeability on native collagen was unchanged. Increased permeability could be related to altered cell–cell junction morphology, as evidenced by β-catenin immunofluorescence. We hypothesize that impaired endothelial cell mechanotransduction on glycated collagen is due to altered integrin interactions. These data suggest that endothelial cells exposed to diabetic hyperglycemia are unable to adapt to the mechanical environment and thereby continue to express a pro-atherosclerotic phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Amore, A., P. Cirina, et al. Nonenzymatically glycated albumin (Amadori adducts) enhances nitric oxide synthase activity and gene expression in endothelial cells. Kidney Int. 51(1):27–35, 1997.

    Article  Google Scholar 

  2. Aota, S., T. Nagai, et al. Characterization of regions of fibronectin besides the arginine-glycine-aspartic acid sequence required for adhesive function of the cell-binding domain using site-directed mutagenesis. J. Biol. Chem. 266(24):15938–15943, 1991.

    Google Scholar 

  3. Aota, S., M. Nomizu, et al. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J. Biol. Chem. 269(40):24756–24761, 1994.

    Google Scholar 

  4. Arias-Salgado, E. G., S. Lizano, et al. Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Proc. Natl. Acad. Sci. USA 100(23):13298–13302, 2003.

    Article  Google Scholar 

  5. Avery, N. C., and A. J. Bailey. The effects of the Maillard reaction on the physical properties and cell interactions of collagen. Pathol. Biol. (Paris) 54(7):387–395, 2006.

    Google Scholar 

  6. Awolesi, M. A., W. C. Sessa, et al. Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells. J. Clin. Invest. 96(3):1449–1454, 1995.

    Article  Google Scholar 

  7. Basta, G., G. Lazzerini, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105(7):816–822, 2002.

    Article  Google Scholar 

  8. Bhullar, I. S., Y. S. Li, et al. Fluid shear stress activation of IkappaB kinase is integrin-dependent. J. Biol. Chem. 273(46):30544–30549, 1998.

    Article  Google Scholar 

  9. Bierhaus, A., T. Illmer, et al. Advanced glycation end product (AGE)-mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE. Circulation 96(7):2262–2271, 1997.

    Google Scholar 

  10. Buck, R. C. Reorientation response of cells to repeated stretch and recoil of the substratum. Exp. Cell Res. 127(2):470–474, 1980.

    Article  MathSciNet  Google Scholar 

  11. Cai, H., and D. G. Harrison. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 87(10):840–844, 2000.

    Google Scholar 

  12. Calalb, M. B., X. Zhang, et al. Focal adhesion kinase tyrosine-861 is a major site of phosphorylation by Src. Biochem. Biophys. Res. Commun. 228(3):662–668, 1996.

    Article  Google Scholar 

  13. Calles-Escandon, J., and M. Cipolla. Diabetes and endothelial dysfunction: a clinical perspective. Endocr. Rev. 22(1):36–52, 2001.

    Article  Google Scholar 

  14. CDC. National Diabetes Fact Sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta: Department of Health and Human Services, 2011.

  15. Celletti, F. L., J. M. Waugh, et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat. Med. 7(4):425–429, 2001.

    Article  Google Scholar 

  16. Chen, K. D., Y. S. Li, et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J. Biol. Chem. 274(26):18393–18400, 1999.

    Article  Google Scholar 

  17. Cheng, J. J., B. S. Wung, et al. Cyclic strain enhances adhesion of monocytes to endothelial cells by increasing intercellular adhesion molecule-1 expression. Hypertension 28(3):386–391, 1996.

    Google Scholar 

  18. Cohen, M. P., V. Y. Wu, et al. Glycated albumin stimulates fibronectin and collagen IV production by glomerular endothelial cells under normoglycemic conditions. Biochem. Biophys. Res. Commun. 239(1):91–94, 1997.

    Article  Google Scholar 

  19. Collins, N. T., P. M. Cummins, et al. Cyclic strain-mediated regulation of vascular endothelial occludin and ZO-1: influence on intercellular tight junction assembly and function. Arterioscler. Thromb. Vasc. Biol. 26(1):62–68, 2006.

    Article  Google Scholar 

  20. Cooper, L. A., T. L. Shen, et al. Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction. Mol. Cell. Biol. 23(22):8030–8041, 2003.

    Article  Google Scholar 

  21. Dartsch, P. C., and E. Betz. Response of cultured endothelial cells to mechanical stimulation. Basic Res. Cardiol. 84(3):268–281, 1989.

    Article  Google Scholar 

  22. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75(3):519–560, 1995.

    Google Scholar 

  23. Di Lullo, G. A., S. M. Sweeney, et al. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 277(6):4223–4231, 2002.

    Article  Google Scholar 

  24. Ding, H., and C. R. Triggle. Endothelial cell dysfunction and the vascular complications associated with type 2 diabetes: assessing the health of the endothelium. Vasc. Health Risk Manag. 1(1):55–71, 2005.

    Article  Google Scholar 

  25. Funk, S. D., A. Yurdagul, Jr., et al. Matrix-specific protein kinase A signaling regulates p21-activated kinase activation by flow in endothelial cells. Circ. Res. 106(8):1394–1403, 2010.

    Article  Google Scholar 

  26. Hahn, C., and M. A. Schwartz. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10(1):53–62, 2009.

    Article  Google Scholar 

  27. Haitoglou, C. S., E. C. Tsilibary, et al. Altered cellular interactions between endothelial cells and nonenzymatically glucosylated laminin/type IV collagen. J. Biol. Chem. 267(18):12404–12407, 1992.

    Google Scholar 

  28. Heitzer, T., T. Schlinzig, et al. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104(22):2673–2678, 2001.

    Article  Google Scholar 

  29. Hempel, A., C. Maasch, et al. High glucose concentrations increase endothelial cell permeability via activation of protein kinase C alpha. Circ. Res. 81(3):363–371, 1997.

    Google Scholar 

  30. Hildebrand, J. D., J. M. Taylor, et al. An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Mol. Cell. Biol. 16(6):3169–3178, 1996.

    Google Scholar 

  31. Hirayama, Y., and B. E. Sumpio. Role of ligand-specific integrins in endothelial cell alignment and elongation induced by cyclic strain. Endothelium 14(6):275–283, 2007.

    Article  Google Scholar 

  32. Hoger, J. H., V. I. Ilyin, et al. Shear stress regulates the endothelial Kir2.1 ion channel. Proc. Natl. Acad. Sci. USA 99(11):7780–7785, 2002.

    Article  Google Scholar 

  33. Howard, A. B., R. W. Alexander, et al. Cyclic strain induces an oxidative stress in endothelial cells. Am. J. Physiol. 272(2 Pt 1):C421–C427, 1997.

    Google Scholar 

  34. Hsu, H. J., C. F. Lee, et al. Stretch-induced stress fiber remodeling and the activations of JNK and ERK depend on mechanical strain rate, but not FAK. PLoS One 5(8):e12470, 2010.

    Article  Google Scholar 

  35. Huijberts, M. S., B. H. Wolffenbuttel, et al. Aminoguanidine treatment increases elasticity and decreases fluid filtration of large arteries from diabetic rats. J. Clin. Invest. 92(3):1407–1411, 1993.

    Article  Google Scholar 

  36. Ilic, D., Y. Furuta, et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377(6549):539–544, 1995.

    Article  Google Scholar 

  37. Ilic, D., Y. Furuta, et al. Focal adhesion kinase is not essential for in vitro and in vivo differentiation of ES cells. Biochem. Biophys. Res. Commun. 209(1):300–309, 1995.

    Article  Google Scholar 

  38. Kakisis, J. D., C. D. Liapis, et al. Effects of cyclic strain on vascular cells. Endothelium 11(1):17–28, 2004.

    Article  Google Scholar 

  39. Kemeny, S. F., and A. M. Clyne. A simplified implementation of edge detection in MATLAB is faster and more sensitive than fast fourier transform for actin fiber alignment quantification. Microsc. Microanal. 17(2):156–166, 2011.

    Article  Google Scholar 

  40. Knight, C. G., L. F. Morton, et al. The collagen-binding A-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275(1):35–40, 2000.

    Article  Google Scholar 

  41. Komolafe, O. A., and T. C. Doehring. Fascicle-scale loading and failure behavior of the Achilles tendon. J. Biomech. Eng. 132(2):021004-1–021004-5, 2010.

    Article  Google Scholar 

  42. Kuzuya, M., S. Satake, et al. Inhibition of angiogenesis on glycated collagen lattices. Diabetologia 41(5):491–499, 1998.

    Article  Google Scholar 

  43. Lo, C. M., H. B. Wang, et al. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79(1):144–152, 2000.

    Article  Google Scholar 

  44. Maroto, R., A. Raso, et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat. Cell Biol. 7(2):179–185, 2005.

    Article  Google Scholar 

  45. Matsushita, H., K. H. Lee, et al. Cyclic strain induces reactive oxygen species production via an endothelial NAD(P)H oxidase. J. Cell Biochem. Suppl 36:99–106, 2001.

    Article  Google Scholar 

  46. Michiels, C. Endothelial cell functions. J. Cell. Physiol. 196(3):430–443, 2003.

    Article  Google Scholar 

  47. Morss, A. S., and E. R. Edelman. Glucose modulates basement membrane fibroblast growth factor-2 via alterations in endothelial cell permeability. J. Biol. Chem. 282(19):14635–14644, 2007.

    Article  Google Scholar 

  48. Nakamoto, T., R. Sakai, et al. Direct binding of C-terminal region of p130Cas to SH2 and SH3 domains of Src kinase. J. Biol. Chem. 271(15):8959–8965, 1996.

    Article  Google Scholar 

  49. Neidlinger-Wilke, C., E. S. Grood, et al. Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. J. Orthop. Res. 19(2):286–293, 2001.

    Article  Google Scholar 

  50. Nerem, R. M., M. J. Levesque, et al. Vascular endothelial morphology as an indicator of the pattern of blood flow. J. Biomech. Eng. 103(3):172–176, 1981.

    Article  Google Scholar 

  51. Orr, A. W., M. H. Ginsberg, et al. Matrix-specific suppression of integrin activation in shear stress signaling. Mol. Biol. Cell 17(11):4686–4697, 2006.

    Article  Google Scholar 

  52. Packham, M. A., H. C. Rowsell, et al. Localized protein accumulation in the wall of the aorta. Exp. Mol. Pathol. 7(2):214–232, 1967.

    Article  Google Scholar 

  53. Pierschbacher, M. D., and E. Ruoslahti. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309(5963):30–33, 1984.

    Article  Google Scholar 

  54. Pierschbacher, M. D., and E. Ruoslahti. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc. Natl. Acad. Sci. USA 81(19):5985–5988, 1984.

    Article  Google Scholar 

  55. Reigle, K. L., G. Di Lullo, et al. Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion. J. Cell. Biochem. 104(5):1684–1698, 2008.

    Article  Google Scholar 

  56. Ruoslahti, E. Fibronectin in cell adhesion and invasion. Cancer Metastasis Rev. 3(1):43–51, 1984.

    Article  Google Scholar 

  57. Salameh, A., M. Zinn, et al. High d-glucose induces alterations of endothelial cell structure in a cell-culture model. J. Cardiovasc. Pharmacol. 30(2):182–190, 1997.

    Article  Google Scholar 

  58. Schaller, M. D., J. D. Hildebrand, et al. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol. Cell. Biol. 14(3):1680–1688, 1994.

    Google Scholar 

  59. Schmidt, A. M., M. Vianna, et al. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J. Biol. Chem. 267(21):14987–14997, 1992.

    Google Scholar 

  60. Schmidt, A. M., O. Hori, et al. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J. Clin. Invest. 96(3):1395–1403, 1995.

    Article  Google Scholar 

  61. Tanaka, S., G. Avigad, et al. Glycation induces expansion of the molecular packing of collagen. J. Mol. Biol. 203(2):495–505, 1988.

    Article  Google Scholar 

  62. Thodeti, C. K., B. Matthews, et al. TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ. Res. 104(9):1123–1130, 2009.

    Article  Google Scholar 

  63. Thubrikar, M. J., and F. Robicsek. Pressure-induced arterial wall stress and atherosclerosis. Ann. Thorac. Surg. 59(6):1594–1603, 1995.

    Article  Google Scholar 

  64. Tzima, E., M. Irani-Tehrani, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431, 2005.

    Article  Google Scholar 

  65. Uusitupa, M. I., L. K. Niskanen, et al. Ten-year cardiovascular mortality in relation to risk factors and abnormalities in lipoprotein composition in type 2 (non-insulin-dependent) diabetic and non-diabetic subjects. Diabetologia 36(11):1175–1184, 1993.

    Article  Google Scholar 

  66. Verma, S., M. R. Buchanan, et al. Endothelial function testing as a biomarker of vascular disease. Circulation 108(17):2054–2059, 2003.

    Article  Google Scholar 

  67. Wang, D. L., C. C. Tang, et al. Cyclical strain increases endothelin-1 secretion and gene expression in human endothelial cells. Biochem. Biophys. Res. Commun. 195(2):1050–1056, 1993.

    Article  Google Scholar 

  68. Wautier, M. P., O. Chappey, et al. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am. J. Physiol. Endocrinol. Metab. 280(5):E685–E694, 2001.

    Google Scholar 

  69. Weimbs, T. Polycystic kidney disease and renal injury repair: common pathways, fluid flow, and the function of polycystin-1. Am. J. Physiol. Renal Physiol. 293(5):F1423–F1432, 2007.

    Article  Google Scholar 

  70. Weinbaum, S., J. M. Tarbell, et al. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9:121–167, 2007.

    Article  Google Scholar 

  71. Wipff, P. J., H. Majd, et al. The covalent attachment of adhesion molecules to silicone membranes for cell stretching applications. Biomaterials 30(9):1781–1789, 2009.

    Article  Google Scholar 

  72. Wung, B. S., J. J. Cheng, et al. Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ. Res. 81(1):1–7, 1997.

    Google Scholar 

  73. Hirose, A., and T. Tanikawa, et al. Advanced glycation end products increase endothelial permeability through the RAGE/Rho signaling pathway. FEBS Lett. 584(1):61–66.

  74. Yamagishi, S., H. Yonekura, et al. Advanced glycation end products-driven angiogenesis in vitro. Induction of the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor. J. Biol. Chem. 272(13):8723–8730, 1997.

    Article  Google Scholar 

  75. Yanagisawa, K., Z. Makita, et al. Specific fluorescence assay for advanced glycation end products in blood and urine of diabetic patients. Metabolism 47(11):1348–1353, 1998.

    Article  Google Scholar 

  76. Yano, Y., J. Geibel, et al. Cyclic strain induces reorganization of integrin alpha 5 beta 1 and alpha 2 beta 1 in human umbilical vein endothelial cells. J. Cell. Biochem. 64(3):505–513, 1997.

    Article  Google Scholar 

  77. Yeung, T., P. C. Georges, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60(1):24–34, 2005.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by NSF CAREER award (CBET-0846751) and AHA Scientist Development Grant to Alisa Morss Clyne; UNCF-Merck Graduate Science Research Dissertation Fellowship, NSF IGERT fellowship (DGE-0654313), and NSF Bridge to the Doctorate fellowship to Dannielle S. Figueroa; and NSF GK-12 fellowship and Department of Education GAANN fellowship to Steven Kemeny. The authors would like to thank summer research assistants Heather Weber and Manjima Dhar for their contributions to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisa Morss Clyne.

Additional information

Associate Editors Yingxiao Wang & Peter J. Butler oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueroa, D.S., Kemeny, S.F. & Clyne, A.M. Glycated Collagen Impairs Endothelial Cell Response to Cyclic Stretch. Cel. Mol. Bioeng. 4, 220–230 (2011). https://doi.org/10.1007/s12195-011-0176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0176-9

Keywords

Navigation