Skip to main content
Log in

Real Time FRET Based Detection of Mechanical Stress in Cytoskeletal and Extracellular Matrix Proteins

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

A molecular force sensing cassette (stFRET) was incorporated into actinin, filamin, and spectrin in vascular endothelial cells (BAECs) and into collagen-19 in Caenorhabditis elegans. To estimate the stress sensitivity of stFRET in solution, we used DNA springs. A 60-mer loop of single stranded DNA was covalently linked to the external cysteines of the donor and acceptor. When the complementary DNA was added it formed double stranded DNA with higher persistence length, stretching the linker and substantially reducing FRET efficiency. The probe stFRET detected constitutive stress in all cytoskeletal proteins tested, and in migrating cells the stress was greater at the leading edge than the trailing edge. The stress in actinin, filamin and spectrin could be reduced by releasing focal attachments from the substrate with trypsin. Inhibitors of actin polymerization produced a modest increase in stress on the three proteins suggesting they are mechanically in parallel. Local shear stress applied to the cell with a perfusion pipette showed gradients of stress leading from the site of perfusion. Transgenic C. elegans labeled in collagen-19 produced a behaviorally and anatomically normal animal with constitutive stress in the cuticle. Stretching the worm visibly stretched the probe in collagen showing that we can trace the distribution of mean tissue stress in specific molecules. stFRET is a general purpose dynamic sensor of mechanical stress that can be expressed intracellularly and extracellularly in isolated proteins, cells, tissues, organs and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. An, X., M. C. Lecomte, J. A. Chasis, N. Mohandas, and W. Gratzer. Shear-response of the spectrin dimer-tetramer equilibrium in the red blood cell membrane. J. Biol. Chem. 277:31796–31800, 2002.

    Article  Google Scholar 

  2. Avvisato, C. L., et al. Mechanical force modulates global gene expression and beta-catenin signaling in colon cancer cells. J. Cell Sci. 120:2672–2682, 2007.

    Article  Google Scholar 

  3. Benz, P. M., et al. Cytoskeleton assembly at endothelial cell–cell contacts is regulated by alphaII-spectrin-VASP complexes. J. Cell Biol. 180:205–219, 2008.

    Article  Google Scholar 

  4. Besch, S. R., T. Suchyna, and F. Sachs. High-speed pressure clamp. Pflugers Arch.-Eur. J. Physiol. 445:161–166, 2002.

    Article  Google Scholar 

  5. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77:71–94, 1974.

    Google Scholar 

  6. Brown, A. E. X., R. I. Litvinov, D. E. Discher, and J. W. Weisel. Forced unfolding of coiled-coils in fibrinogen by single-molecule AFM. Biophys. J. 92:L39–L41, 2007.

    Article  Google Scholar 

  7. Carter, N. J., and R. A. Cross. Kinesin’s moonwalk. Curr. Opin. Cell Biol. 18:61–67, 2006.

    Article  Google Scholar 

  8. Croft, D. R., et al. Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J. Cell Biol. 168:245–255, 2005.

    Article  Google Scholar 

  9. Cunningham, C. C., et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255:325–327, 1992.

    Article  Google Scholar 

  10. Esue, O., Y. Tseng, and D. Wirtz. Alpha-actinin and filamin cooperatively enhance the stiffness of actin filament networks. PLoS One 4:e4411, 2009.

    Article  Google Scholar 

  11. Ferrer, J. M., et al. Measuring molecular rupture forces between single actin filaments and actin-binding proteins. Proc. Natl Acad. Sci. USA 105:9221–9226, 2008.

    Article  Google Scholar 

  12. Forde, N. R., D. Izhaky, G. R. Woodcock, G. J. Wuite, and C. Bustamante. Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase. Proc. Natl Acad. Sci. USA 99:11682–11687, 2002.

    Article  Google Scholar 

  13. Furuike, S., T. Ito, and M. Yamazaki. Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. FEBS Lett. 498:72–75, 2001.

    Article  Google Scholar 

  14. Gardel, M. L., et al. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc. Natl Acad. Sci. USA 103:1762–1767, 2006.

    Article  Google Scholar 

  15. Gosse, C., and V. Croquette. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82:3314–3329, 2002.

    Article  Google Scholar 

  16. Huang, S., and D. E. Ingber. The structural and mechanical complexity of cell-growth control. Nat. Cell Biol. 1:E131–E138, 1999.

    Article  Google Scholar 

  17. Johnson, C. P., H. Y. Tang, C. Carag, D. W. Speicher, and D. E. Discher. Forced unfolding of proteins within cells. Science 317:663–666, 2007.

    Article  Google Scholar 

  18. Kainulainen, T., et al. Cell death and mechanoprotection by filamin a in connective tissues after challenge by applied tensile forces. J. Biol. Chem. 277:21998–22009, 2002.

    Article  Google Scholar 

  19. Kramer, J. M. Structures and functions of collagens in Caenorhabditis elegans. FASEB J. 8:329–336, 1994.

    Google Scholar 

  20. Kramer, J. M., J. J. Johnson, R. S. Edgar, C. Basch, and S. Roberts. The sqt-1 gene of C. elegans encodes a collagen critical for organismal morphogenesis. Cell 55:555–565, 1988.

    Article  Google Scholar 

  21. Lamaze, C., L. M. Fujimoto, H. L. Yin, and S. L. Schmid. The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J. Biol. Chem. 272:20332–20335, 1997.

    Article  Google Scholar 

  22. Leikina, E., M. V. Mertts, N. Kuznetsova, and S. Leikin. Type I collagen is thermally unstable at body temperature. Proc. Natl Acad. Sci.USA 99:1314–1318, 2002.

    Article  Google Scholar 

  23. Liu, L., M. P. Jedrychowski, S. P. Gygi, and P. F. Pilch. Role of insulin-dependent cortical fodrin/spectrin remodeling in glucose transporter 4 translocation in rat adipocytes. Mol. Biol. Cell 17:4249–4256, 2006.

    Article  Google Scholar 

  24. MacDonald, R. I., and E. V. Pozharski. Free energies of urea and of thermal unfolding show that two tandem repeats of spectrin are thermodynamically more stable than a single repeat. Biochemistry 40:3974–3984, 2001.

    Article  Google Scholar 

  25. Martin, P., and S. M. Parkhurst. Development: may the force be with you. Science 300:63–65, 2003.

    Article  Google Scholar 

  26. Matthews, B. D., D. R. Overby, R. Mannix, and D. E. Ingber. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119:508–518, 2006.

    Article  Google Scholar 

  27. Mello, C. C., J. M. Kramer, D. Stinchcomb, and V. Ambros. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10:3959–3970, 1991.

    Google Scholar 

  28. Meng, F., T. M. Suchyna, and F. Sachs. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ. FEBS J. 275:3072–3087, 2008.

    Article  Google Scholar 

  29. Min, W., et al. Fluctuating enzymes: lessons from single-molecule studies. Acc. Chem. Res. 38:923–931, 2005.

    Article  MathSciNet  Google Scholar 

  30. Myllyharju, J., and K. I. Kivirikko. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20:33–43, 2004.

    Article  Google Scholar 

  31. Na, S., et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl Acad. Sci. USA 105:6626–6631, 2008.

    Article  Google Scholar 

  32. Nagai, T., et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20:87–90, 2002.

    Article  Google Scholar 

  33. Ohta, Y., N. Suzuki, S. Nakamura, J. H. Hartwig, and T. P. Stossel. The small GTPase RalA targets filamin to induce filopodia. Proc. Natl Acad. Sci. USA 96:2122–2128, 1999.

    Article  Google Scholar 

  34. Okreglak, V., and D. G. Drubin. Loss of Aip1 reveals a role in maintaining the actin monomer pool and an in vivo oligomer assembly pathway. J. Cell Biol. 188:769–777, 2010.

    Article  Google Scholar 

  35. Primalov, P. Physical basis of the stability of folded conformations of proteins. New York: Freeman, 1992.

    Google Scholar 

  36. Qu, H., C. Y. Tseng, Y. Wang, A. J. Levine, and G. Zocchi. The elastic energy of sharply bent nicked DNA. EPL 90:1–5, 2010.

    Google Scholar 

  37. Rief, M., J. Pascual, M. Saraste, and H. E. Gaub. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J. Mol. Biol. 286:553–561, 1999.

    Article  Google Scholar 

  38. Rizzo, M. A., G. H. Springer, B. Granada, and D. W. Piston. An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22:445–449, 2004.

    Article  Google Scholar 

  39. Sarkar, A., S. Caamano, and J. M. Fernandez. The elasticity of individual titin PEVK exons measured by single molecule atomic force microscopy. J. Biol. Chem. 280:6261–6264, 2005.

    Article  Google Scholar 

  40. Schmoller, K. M., O. Lieleg, and A. R. Bausch. Internal stress in kinetically trapped actin bundle networks. Soft Matter 4:2365–2367, 2008.

    Article  Google Scholar 

  41. Schwaiger, I., C. Sattler, D. R. Hostetter, and M. Rief. The myosin coiled-coil is a truly elastic protein structure. Nat. Mater. 1:232–235, 2002.

    Article  Google Scholar 

  42. Schwaiger, I., M. Schleicher, A. A. Noegel, and M. Rief. The folding pathway of a fast-folding immunoglobulin domain revealed by single-molecule mechanical experiments. EMBO Rep. 6:46–51, 2005.

    Article  Google Scholar 

  43. Soncini, M., et al. Mechanical response and conformational changes of alpha-actinin domains during unfolding: a molecular dynamics study. Biomech. Model. Mechanobiol. 6:399–407, 2007.

    Article  Google Scholar 

  44. Suchyna, T. M., and F. Sachs. Mechanosensitive channel properties and membrane mechanics in mouse dystrophic myotubes. J. Physiol. 581:369–387, 2007.

    Article  Google Scholar 

  45. Thein, M. C., et al. Caenorhabditis elegans exoskeleton collagen COL-19: an adult-specific marker for collagen modification and assembly, and the analysis of organismal morphology. Dev. Dyn. 226:523–539, 2003.

    Article  Google Scholar 

  46. Trepat, X., et al. Universal physical responses to stretch in the living cell. Nature 447:592–595, 2007.

    Article  Google Scholar 

  47. Wakatsuki, T., B. Schwab, N. C. Thompson, and E. L. Elson. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J. Cell Sci. 114:1025–1036, 2001.

    Google Scholar 

  48. Wang, Y., A. Wang, H. Qu, and G. Zocchi. Protein–DNA chimeras: synthesis of two-arm chimeras and non-mechanical effects of the DNA spring. J. Phys. Condens. Matter 21:1–11, 2009.

    Google Scholar 

  49. Wang, A., and G. Zocchi. Elastic energy driven polymerization. Biophys. J. 96:2344–2352, 2009.

    Article  Google Scholar 

  50. Wiggins, P. A., et al. High flexibility of DNA on short length scales probed by atomic force microscopy. Nat. Nanotechnol. 1:137–141, 2006.

    Article  Google Scholar 

  51. Zhang, Z., S. A. Weed, P. G. Gallagher, and J. S. Morrow. Dynamic molecular modeling of pathogenic mutations in the spectrin self-association domain. Blood 98:1645–1653, 2001.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance of the Confocal Microscope and Flow Cytometry Facility in the School of Medicine and Biomedical Sciences, University at Buffalo and support from the NIH.

Author contributions

Fanjie Meng—Designed and constructed stFRET probes, DNA stretching of stFRET, Imaging and analysis of constitutive strain, Wrote paper.

Thomas Suchyna—Designed performed mechanical stimulation experiments, FRET systems calibration/characterization, Imaging and analysis of constitutive strain, Wrote paper.

Elena Lazakovitch—Injected C. elegans oocytes and cultured worms, detergent solubilization of worms.

Richard M. Gronostajski—Collagen construct design, worm injection, edited paper.

Frederick Sachs—Project design, data analysis, Wrote paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Suchyna.

Additional information

Associate Editor Yingxiao Peter Wang and Peter Butler oversaw the review of this article.

F. Meng and T. M. Suchyna are co-first authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, F., Suchyna, T.M., Lazakovitch, E. et al. Real Time FRET Based Detection of Mechanical Stress in Cytoskeletal and Extracellular Matrix Proteins. Cel. Mol. Bioeng. 4, 148–159 (2011). https://doi.org/10.1007/s12195-010-0140-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-010-0140-0

Keywords

Navigation