Skip to main content

Visualizing Neurons Under Tension In Vivo with Optogenetic Molecular Force Sensors

  • Protocol
  • First Online:
Mechanobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2600))

Abstract

The visualization of mechanical stress distribution in specific molecular networks within a living and physiologically active cell or animal remains a formidable challenge in mechanobiology. The advent of fluorescence-resonance energy transfer (FRET)-based molecular tension sensors overcame a significant hurdle that now enables us to address previously technically limited questions. Here, we describe a method that uses genetically encoded FRET tension sensors to visualize the mechanics of cytoskeletal networks in neurons of living animals with sensitized emission FRET and confocal scanning light microscopy. This method uses noninvasive immobilization of living animals to image neuronal β-spectrin cytoskeleton at the diffraction limit, and leverages multiple imaging controls to verify and underline the quality of the measurements. In combination with a semiautomated machine-vision algorithm to identify and trace individual neurites, our analysis performs simultaneous calculation of FRET efficiencies and visualizes statistical uncertainty on a pixel by pixel basis. Our approach is not limited to genetically encoded spectrin tension sensors, but can also be used for any kind of ratiometric imaging in neuronal cells both in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kung C (2005) A possible unifying principle for mechanosensation. Nature 436(7051):647–654

    Article  CAS  Google Scholar 

  2. Katta S, Krieg M, Goodman MB (2015) Feeling force: physical and physiological principles enabling sensory mechanotransduction. Annu Rev Cell Dev Biol 31(1):347–371. https://doi.org/10.1146/annurev-cellbio-100913-013426

    Article  CAS  Google Scholar 

  3. Venturini V, Pezzano F, Castro FC et al (2020) The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science 370(6514). https://doi.org/10.1126/science.aba2644

  4. Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356):316–323

    Article  CAS  Google Scholar 

  5. Krieg M, Dunn AR, Goodman MB (2015) Mechanical systems biology of C. elegans touch sensation. BioEssays 37(3):335–344. https://doi.org/10.1002/bies.201400154

    Article  Google Scholar 

  6. Krieg M, Fläschner G, Alsteens D et al (2018) Atomic force microscopy-based mechanobiology. Nat Rev Phys 1:41–57. https://doi.org/10.1038/s42254-018-0001-7

    Article  Google Scholar 

  7. Castro F, Venturini V, Ortiz-V’asquez S et al (2021) Direct force measurements of subcellular mechanics in confinement using optical tweezers. J Vis Exp 2021(174):1–35. https://doi.org/10.3791/62865

  8. Gayrard C, Borghi N (2016) FRET-based molecular tension microscopy. Methods 94(2016):33–42. https://doi.org/10.1016/j.ymeth.2015.07.010

    Article  CAS  Google Scholar 

  9. Hurst S, Vos BE, Brandt M et al (2021) Intracellular softening and increased viscoelastic fluidity during division. Nat Phys 17(11):1270–1276. https://doi.org/10.1038/s41567-021-01368-z

    Article  CAS  Google Scholar 

  10. Grashoff C, Hoffman BD, Brenner MD et al (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466(7303):263–266

    Article  CAS  Google Scholar 

  11. Canever H, Carollo PS, Fleurisson R et al (2021) Molecular tension microscopy of E-Cadherin during epithelial- mesenchymal transition. Methods Mol Biol 2179:289–299

    Google Scholar 

  12. Krieg M, Dunn AR, Goodman MB (2014) Mechanical control of the sense of touch by β-spectrin. Nat Cell Biol 16(3):224–233. https://doi.org/10.1038/ncb2915

    Article  CAS  Google Scholar 

  13. Cai D, Chen SC, Prasad M et al (2014) Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157(5):1146–1159. https://doi.org/10.1016/j.cell.2014.03.045

  14. Vuong-Brender TTK, Boutillon A, Rodriguez D et al (2018) HMP-1/ α-catenin pro- motes junctional mechanical integrity during morphogenesis. PLoS ONE 13(2):1–21. https://doi.org/10.1371/journal.pone.0193279

    Article  CAS  Google Scholar 

  15. Ye AA, Cane S, Maresca TJ (2016) Chromosome biorientation produces hundreds of piconewtons at a metazoan kinetochore. Nat Commun 7:1–9. https://doi.org/10.1038/ncomms13221

    Article  CAS  Google Scholar 

  16. Lemke SB, Weidemann T, Cost AL et al (2018) A small proportion of Talin molecules transmit forces to achieve muscle attachment in vivo. PLoS Biol 310(939):446336. https://doi.org/10.1101/446336

    Article  CAS  Google Scholar 

  17. Conway DDE, Breckenridge MMT, Hinde E et al (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23(11):1024–1030. https://doi.org/10.1016/j.cub.2013.04.049.Fluid

    Article  CAS  Google Scholar 

  18. Aird EJ, Tompkins KJ, Ramirez MP et al (2020) Enhanced molecular tension sensor based on Bioluminescence Resonance Energy Transfer (BRET). ACS Sensors 5(1):34–39. https://doi.org/10.1021/acssensors.9b00796

    Article  CAS  Google Scholar 

  19. Ringer P, Weißl A, Cost AL et al (2017) Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nat Methods 14(11):1090–1096. https://doi.org/10.1038/nmeth.4431

    Article  CAS  Google Scholar 

  20. Paszek MJ, DuFort CC, Rossier O et al (2014) The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511(7509):319–325

    Article  CAS  Google Scholar 

  21. Guo J, Wang Y, Sachs F et al (2014) Actin stress in cell reprogramming. Proc Natl Acad Sci 111(49):E5252–E5261. https://doi.org/10.1073/pnas.1411683111

    Article  CAS  Google Scholar 

  22. Meng F, Suchyna TM, Sachs F (2008) A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ. FEBS J 275(12):3072–3087

    Article  CAS  Google Scholar 

  23. Ye N, Verma D, Meng F et al (2014) Direct observation of α-actinin tension and recruitment at focal adhesions during contact growth. Exp Cell Res 327(1):57–67. https://doi.org/10.1016/j.yexcr.2014.07.026

    Article  CAS  Google Scholar 

  24. LaCroix AS, Lynch AD, Berginski ME et al (2018) Tunable molecular tension sensors reveal extension-based control of vinculin loading. elife 7:1–36. https://doi.org/10.7554/elife.33927

    Article  Google Scholar 

  25. Arsenovic PT, Ramachandran I, Bathula K et al (2016) Nesprin-2G, a component of the nuclear LINC complex, is subject to myosin-dependent tension. Biophys J 110(1):34–43. https://doi.org/10.1016/j.bpj.2015.11.014

    Article  CAS  Google Scholar 

  26. D́ejardin T, Carollo PS, Sipieter F et al (2020) Nesprins are mechanotransducers that discriminate epithelial-mesenchymal transition programs. J Cell Biol 219(10). https://doi.org/10.1083/JCB.201908036

  27. Borghi N, Sorokina M, Shcherbakova OG et al (2012) E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc Natl Acad Sci U S A 109(31):12568–12,573

    Article  CAS  Google Scholar 

  28. Price AJ, Cost AL, Ungewiß H et al (2018) Mechanical loading of desmosomes depends on the magnitude and orientation of external stress. Nat Commun 9(1). https://doi.org/10.1038/s41467-018-07523-0

  29. Sanfeliu-Cerdán N, Mateos B, Garcia-Cabau C et al (2022) A rigidity phase transition of Stomatin condensates governs a switch from transport to mechanotransduction. BioRxiv. https://doi.org/10.1101/2022.07.08.499356

  30. Brenner MD, Zhou R, Conway DE et al (2016) Spider silk peptide is a compact, linear nano-spring ideal for intracellular tension sensing. Nano Lett 16(3):2096–2102. https://doi.org/10.1021/acs.nanolett.6b00305

  31. Meng F, Sachs F (2012) Orientation-based FRET sensor for real-time imaging of cellular forces. J Cell Sci 125(3):743–750

    Article  CAS  Google Scholar 

  32. Elangovan M, Wallrabe H, Chen Y et al (2003) Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29(1):58–73

    Article  CAS  Google Scholar 

  33. Day RN, Booker CF, Periasamy A (2008) Characterization of an improved donor fluorescent protein for Forster resonance energy transfer microscopy. J Biomed Opt 13(3):31203

    Article  Google Scholar 

  34. LaCroix AS, Rothenberg KE, Berginski ME et al (2015) Construction, imaging, and analysis of FRET-based tension sensors in living cells, vol 125. Elsevier Ltd. https://doi.org/10.1016/bs.mcb.2014.10.033

    Book  Google Scholar 

  35. Cost AL, Ringer P, Chrostek-Grashoff A et al (2015) How to measure molecular forces in cells: a guide to evaluating genetically-encoded FRET-based tension sensors. Cell Mol Bioeng 8(1):96–105. https://doi.org/10.1007/s12195-014-0368-1

    Article  CAS  Google Scholar 

  36. Das R, Lin LC, Catala-Castro F et al (2021) An asymmetric mechanical code ciphers curvature-dependent proprioceptor activity. Sci Adv 7:eabg4617. https://doi.org/10.1126/sciadv.abg4617

  37. Kelley M, Yochem J, Krieg M et al (2015) FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during c. elegans embryogenesis. elife 2015(4):1–71. https://doi.org/10.7554/eLife.06565

    Article  Google Scholar 

  38. Johnson CP, Tang HY, Carag C et al (2007) Forced unfolding of proteins within cells. Science (New York, NY) 317(5838):663–666

    Article  CAS  Google Scholar 

  39. Gates EM, LaCroix AS, Rothenberg KE et al (2019) Improving quality, reproducibility, and usability of FRET-based tension sensors. Cytometry Part A 95(2):201–213. https://doi.org/10.1002/cyto.a.23688

    Article  CAS  Google Scholar 

  40. Fischer LS, Rangarajan S, Sadhanasatish T et al (2021) Molecular force measurement with tension sensors. Annu Rev Biophys 50:595–616. https://doi.org/10.1146/annurev-biophys-101920-064756

    Article  CAS  Google Scholar 

  41. Sands B, Burnaevskiy N, Yun SR et al (2018) A toolkit for DNA assembly, genome engineering and multicolor imaging for C. elegans. Transl Med Aging 2(2018):1–10. https://doi.org/10.1016/j.tma.2018.01.001

    Article  Google Scholar 

  42. Porta-de-la Riva M, Fontrodona L, Villanueva A et al (2012) Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp 64:e4019. https://doi.org/10.3791/4019

    Article  CAS  Google Scholar 

  43. Kim E, Sun L, Gabel CV et al (2013) Long-term imaging of Caenorhabditis elegans using nanoparticle-mediated immobilization. PLoS ONE 8(1):e53419

    Article  CAS  Google Scholar 

  44. Bao Z, Murray JI (2011) Mounting Caenorhabditis elegans embryos for live imaging of embryogenesis. Cold Spring Harb Protoc 6(9):1089–1094. https://doi.org/10.1101/pdb.prot065599

    Article  Google Scholar 

  45. Rivera Gomez KA, Schvarzstein M (2018) Immobilization nematodes for live imaging using an agarose pad produced with a Vinyl Record. microPublication Biology. https://doi.org/10.17912/QG0J-VT85

  46. Jeong B, Kim SW, Bae YH (2012) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 64(SUPPL):154–162. https://doi.org/10.1016/j.addr.2012.09.012

    Article  Google Scholar 

  47. Gilleland CL, Rohde CB, Zeng F et al (2010) Microfluidic immobilization of physiologically active Caenorhabditis elegans. Nat Protoc 5(12):1888–1902

    Article  CAS  Google Scholar 

  48. Burnett K, Edsinger E, Albrecht DR (2018) Rapid and gentle hydrogel encapsulation of living organisms enables long-term microscopy over multiple hours. Commun Biol 1(1). https://doi.org/10.1038/s42003-018-0079-6

  49. Kopito RB, Levine E (2014) Durable spatiotemporal surveillance of Caenorhabditis elegans response to environmental cues. Lab Chip 14(4):764–770. https://doi.org/10.1039/c3lc51061a

    Article  CAS  Google Scholar 

  50. Wen Q, Po MD, Hulme E et al (2012) Proprioceptive coupling within motor neurons drives C. elegans forward locomotion. Neuron 76(4):750–761

    Article  CAS  Google Scholar 

  51. Lockery SR, Lawton KJ, Doll JC et al (2008) Artificial dirt: microfluidic substrates for nematode neurobiology and behavior. J Neurophysiol 99(6):3136–3143. https://doi.org/10.1152/jn.91327.2007

    Article  CAS  Google Scholar 

  52. Lambert TJ (2019) FPbase: a community-editable fluorescent protein database. Nat Methods 16(4):277–278. https://doi.org/10.1038/s41592-019-0352-8

    Article  CAS  Google Scholar 

  53. Chen H 3rd, Koushik SV et al (2006) Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys J 91(5):L39–L41

    Article  CAS  Google Scholar 

  54. Sun Y, Periasamy A (2010) Additional correction for energy transfer efficiency calculation in filter-based Förster resonance energy transfer microscopy for more accurate results. J Biomed Opt 15(2):020513. https://doi.org/10.1117/1.3407655

    Article  CAS  Google Scholar 

  55. Feige JN, Sage D, Wahli W et al (2005) PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc Res Tech 68(1):51–58

    Article  CAS  Google Scholar 

  56. Koushik SV, Chen H, Thaler C et al (2006) Cerulean, Venus, and VenusY67C FRET reference standards. Biophys J 91(12):L99–L101

    Article  CAS  Google Scholar 

  57. Esposito A (2020) How many photons are needed for FRET imaging? Biomed Opt Express 11(2):1186. https://doi.org/10.1364/boe.379305

    Article  Google Scholar 

  58. Hulme SE, Shevkoplyas SS, Apfeld J et al (2007) A microfabricated array of clamps for immobilizing and imaging C. elegans. Lab Chip 7(11):1515

    Article  CAS  Google Scholar 

  59. Berger S, Spiri S, DeMello A et al (2021) Microfluidic-based imaging of complete Caenorhabditis elegans larval development. Development (Cambridge) 148(18). https://doi.org/10.1242/DEV.199674

  60. Heintzmann R (2006) Band limit and appropriate sampling in microscopy. Cell Biol 3:29–36. https://doi.org/10.1016/B978-012164730-8/50131-3

    Article  Google Scholar 

  61. Kenworthy AK, Edidin M (1998) Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J Cell Biol 142(1):69–84

    Article  CAS  Google Scholar 

  62. Morris C, Foster OK, Handa S et al (2018) Function and regulation of the Caenorhabditis elegans Rab32 family member GLO-1 in lysosome-related organelle biogenesis. PLoS Genet 14(11):1–36. https://doi.org/10.1371/journal.pgen.1007772

    Article  CAS  Google Scholar 

  63. Datta R, Heaster TM, Sharick JT et al (2020) Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J Biomed Opt 25(07):1. https://doi.org/10.1117/1.jbo.25.7.071203

    Article  CAS  Google Scholar 

  64. Meiresonne NY, Consoli E, Mertens LM et al (2019) Superfolder mTurquoise2 ox optimized for the bacterial periplasm allows high efficiency in vivo FRET of cell division antibiotic targets. Mol Microbiol 111(4):1025–1038. https://doi.org/10.1111/mmi.14206

    Article  CAS  Google Scholar 

  65. Costantini LM, Baloban M, Markwardt ML et al (2015) A palette of fluorescent proteins optimized for diverse cellular environments. Nat Commun 6(May). https://doi.org/10.1038/ncomms8670

  66. Arsenovic PT, Mayer CR, Conway DE (2017) SensorFRET: a standardless approach to measuring pixel-based spectral bleed-through and FRET efficiency using spectral imaging. Sci Rep 7(1):1–15. https://doi.org/10.1038/s41598-017-15,411-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the ICFO SLN facility for the generous use of their microscopes. M.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness through the Plan Nacional (PGC2018-097882-A-I00), “Severo Ochoa” program for Centres of Excellence in R&D (CEX2019-000910-S; RYC-2016-21062), from Fundació Privada Cellex, Fundació Mir-Puig, and from Generalitat de Catalunya through the CERCA and Research program (2017 SGR 1012), in addition to funding through ERC (MechanoSystems) and HFSP (CDA00023/2018), la Caixa Foundation (ID 100010434, LCF/BQ/DI18/11660035), and MINECO (FPIPRE2019-088840 funded by MCIN/AEI/10.13039/501100011033 and ESF “Investing in your future” to N.S.). M.B.G. is supported by NIH Grant R35105092 and A.R.D. by NIH grant 1R35GM130332-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Krieg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sanfeliu-Cerdán, N., Lin, LC., Dunn, A.R., Goodman, M.B., Krieg, M. (2023). Visualizing Neurons Under Tension In Vivo with Optogenetic Molecular Force Sensors. In: Zaidel-Bar, R. (eds) Mechanobiology. Methods in Molecular Biology, vol 2600. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2851-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2851-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2850-8

  • Online ISBN: 978-1-0716-2851-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics