Skip to main content
Log in

Calcium Concentration Effects on the Mechanical and Biochemical Properties of Chondrocyte-Alginate Constructs

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Alginate gel crosslinked by calcium ions (Ca2+) has been widely used in cartilage tissue engineering. However, most studies have been largely performed in vitro in medium with a calcium concentration ([Ca2+]) of 1.8 mM, while the calcium level in the synovial fluid of the human knee joints, for example, has been reported to be 4 mM or even higher. To simulate the synovial environment, the two studies in this paper were designed to investigate how the alginate scaffold alone, as well as the chondrocytes seeded alginate gel responds to variations in medium [Ca2+]. In Study A, the mechanical properties of 2% alginate hydrogel were tested in 0.15 M NaCl and various [Ca2+] (1.0, 1.8, and 4 mM). In Study B, primary bovine chondrocytes were seeded in alginate gel, and biochemical contents and mechanical properties were determined after incubation for 28 days in three [Ca2+] (1.8, 4, and 8 mM). For both studies, it was found that the magnitude of the complex shear modulus (|G * |) at 1 Hz doubled and the corresponding phase angle shift angle (δ) increased >2° as a result of the approximate 4-fold change in [Ca2+]. At high [Ca2+], the chondrocyte glycosaminogylcan (GAG) production inside the chondrocyte-alginate constructs was suppressed significantly. This is likely due to a decrease in the porosity of the chondrocyte-alginate constructs as a result of compaction in structure caused by an increased crosslinking density with [Ca2+]. These may be important considerations in the eventual successful implementation of cartilage tissue-engineered constructs in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. Only a torsional shear test of cylindrical specimens, Fig. 2, provides an equivoluminal deformation (i.e., no matrix dilatation) and hence no motive forces to drive interstitial fluid flow.47

References

  1. Armstrong C. G., V. C. Mow. (1982) Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J. Bone Joint Surg. Am. 64:88–94

    Google Scholar 

  2. Awad H. A., M. Q. Wickham, H. A. Leddy, J. M. Gimble, F. Guilak. (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25: 3211–3222

    Article  Google Scholar 

  3. Bancroft J. D., M. Gamble. (2002) Theory and Practice of Histological Techniques. New York: Churchill Livingstone

    Google Scholar 

  4. Bonaventure J., N. Kadhom, L. Cohen-Solal, K. H. Ng, J. Bourguignon, C. Lasselin, P. Freisinger. (1994) Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp. Cell Res. 212: 97–104

    Article  Google Scholar 

  5. Bonen D. K., T. M. Schmid. (1991) Elevated extracellular calcium concentrations induce type × collagen synthesis in chondrocyte cultures. J. Cell Biol. 115: 1171–1178

    Article  Google Scholar 

  6. Brittberg M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, L. Peterson. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331: 889–895

    Article  Google Scholar 

  7. Butler D. L., S. A. Goldstein, F. Guilak. (2000) Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 122:570–575

    Article  Google Scholar 

  8. Campo R. D. (1988) Effects of cations on cartilage structure: swelling of growth plate and degradation of proteoglycans induced by chelators of divalent cations. Calcified Tissue Int. 43:108–121

    Article  Google Scholar 

  9. Diduch D. R., L. C. Jordan, C. M. Mierisch, G. Balian. (2000) Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy 16: 571–577

    Article  Google Scholar 

  10. Enobakhare B. O., D. L. Bader, D. A. Lee. (1996) Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal. Biochem. 243:189–191

    Article  Google Scholar 

  11. Farndale R. W., C. A. Sayers, A. J. Barrett. (1982) A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tissue Res. 9: 247–248

    Article  Google Scholar 

  12. Gigout A., M. Jolicoeur, M. D. Buschmann. (2005) Low calcium levels in serum-free media maintain chondrocyte phenotype in monolayer culture and reduce chondrocyte aggregation in suspension culture. Osteoarth. Cartilage 13: 1012–1024

    Article  Google Scholar 

  13. Goldsmith A. A., S. E. Clift. (1998) Investigation into the biphasic properties of a hydrogel for use in a cushion form replacement joint. J. Biomech. Eng. 120: 362–369

    Article  Google Scholar 

  14. Grant G. T., E. R. Morris, D. A. Rees, P. J. C. Smith, D. Thom. (1973) Biological Interactions between polysaccharides and divalent cations—egg-box model. Febs. Lett. 32: 195–198

    Article  Google Scholar 

  15. Guilak F., C. T. Hung. (2005) Physical regulation of cartilage metabolism. In: V. C. Mow, R. Huiskes. (eds) Basic Orthopaedic Biomechanics and Mechano-Biology. Philadelphia: Lippincott Williams and Wilkins, pp. 259–300

    Google Scholar 

  16. Guilak F., V. C. Mow. (2000) The biomechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech. 33:1663–1673

    Article  Google Scholar 

  17. Guo X. E. (2001) Mechanical properties of cortical bone and cancelllous bone tissue. In: S. C. Cowin. (ed) Bone Mechanics Handbook. Boca Raton, FL: CRC Press, pp. 10–11

    Google Scholar 

  18. Guo J. F., G. W. Jourdian, D. K. MacCallum. (1989) Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect. Tissue Res. 19: 277–297

    Article  Google Scholar 

  19. Hauselmann H. J., R. J. Fernandes, S. S. Mok, T. M. Schmid, J. A. Block, M. B. Aydelotte, K. E. Kuettner, E. J. Thonar. (1994) Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J. Cell Sci. 107(Pt 1): 17–27

    Google Scholar 

  20. Hunziker E. B. (1999) Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarth. Cartilage 7: 15–28

    Article  Google Scholar 

  21. Huszar G., J. Maiocco, F. Naftolin. (1980) Monitoring of collagen and collagen fragments in chromatography of protein mixtures. Anal. Biochem. 105: 424–429

    Article  Google Scholar 

  22. Jiang J., S. B. Nicoll, H. H. Lu. (2005) Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem. Biophys. Res. Commun. 338: 762–770

    Article  Google Scholar 

  23. Koyano Y., M. Hejna, J. Flechtenmacher, T. M. Schmid, E. J. Thonar, J. Mollenhauer. (1996) Collagen and proteoglycan production by bovine fetal and adult chondrocytes under low levels of calcium and zinc ions. Connect. Tissue Res. 34: 213–225

    Article  Google Scholar 

  24. Langer R., J. P. Vacanti. (1993) Tissue engineering. Science 260: 920–926

    Article  Google Scholar 

  25. LeRoux M. A., F. Guilak, L. A. Setton. (1999) Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J. Biomed. Mater. Res. 47: 46–53

    Article  Google Scholar 

  26. Mankin H. J., V. C. Mow, J. A. Buckwalter, J. P. Iannotti, A. Ratcliffe. (2000) Articular cartilage structure, composition, and function. In: J. A. Buckwalter, T. A. Einhorn, S. R. Simon. (eds) Orthopaedic Basic Science: Biology and Biomechanics of the Musculoskeletal System. Rosemont, IL: American Academy of Orthopaedic Surgeons Publishers, pp. 443–470

    Google Scholar 

  27. Maroudas A. (1979) Physicochemical properties of articular cartilage. In: M. A. R. Freeman. (ed) Adult Articular Cartilage. Kent, UK: Pitman Medical, pp. 215–290

    Google Scholar 

  28. Masuda K., R. L. Sah, M. J. Hejna, E. J. Thonar. (2003) A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: the alginate-recovered-chondrocyte (ARC) method. J. Orthop. Res. 21: 139–148

    Article  Google Scholar 

  29. Mauck R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, G. A. Ateshian. (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122: 252–260

    Article  Google Scholar 

  30. McGowan K. B., M. S. Kurtis, L. M. Lottman, D. Watson, R. L. Sah. (2002) Biochemical quantification of DNA in human articular and septal cartilage using PicoGreen and Hoechst 33258. Osteoarth. Cartilage. 10: 580–587

    Article  Google Scholar 

  31. Mitchell J. R., J. M. V. Blanshard. (1974) Rheological properties of alginate gels. Rheol. Acta. 13: 180–184

    Article  Google Scholar 

  32. Mow V. C., W. Y. Gu, F. H. Chen. (2005) Structure and function of articular cartilage and meniscus. In: V. C. Mow, R. Huiskes. (eds) Basic Orthopaedic Biomechanics and Mechano-Biology. Philadelphia: Lippincott Williams and Wilkins, pp. 181–258

    Google Scholar 

  33. Mow V. C., S. C. Kuei, W. M. Lai, C. G. Armstrong. (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102: 73–84

    Article  Google Scholar 

  34. Mow V. C., C. C. Wang, C. T. Hung. (1999) The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarth. Cartilage 7: 41–58

    Article  Google Scholar 

  35. Paige K. T., L. G. Cima, M. J. Yaremchuk, B. L. Schloo, J. P. Vacanti, C. A. Vacanti. (1996) De novo cartilage generation using calcium alginate-chondrocyte constructs. Plast. Reconstr. Surg. 97: 168–178; discussion 179–180

    Article  Google Scholar 

  36. Reddy G. K., C. S. Enwemeka. (1996) A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 29: 225–229

    Article  Google Scholar 

  37. Segeren A. J. M., J. V. Boskamp, M. Vandentempel. (1975) Rheological and swelling properties of alginate gels. Faraday Discuss. 1974:255–262

    Google Scholar 

  38. Seibel M. J., W. Macaulay, R. Jelsma, F. Saed-Nejad, A. Ratcliffe. (1992) Antigenic properties of keratan sulfate: influence of antigen structure, monoclonal antibodies, and antibody valency. Arch. Biochem. Biophys. 296: 410–418

    Article  Google Scholar 

  39. Smidsrod O., G. Skjak-Braek. (1990) Alginate as immobilization matrix for cells. Trends Biotechnol. 8: 71–78

    Article  Google Scholar 

  40. Stegemann H., K. Stalder. (1967) Determination of hydroxyproline. Clin. Chim. Acta. 18: 267–273

    Article  Google Scholar 

  41. Thu B., P. Bruheim, T. Espevik, O. Smidsrod, P. Soon-Shiong, G. Skjak-Braek. (1996) Alginate polycation microcapsules. I. Interaction between alginate and polycation. Biomaterials 17: 1031–1040

    Article  Google Scholar 

  42. Velings N. M., M. M. Mestdagh. (1995) Physicochemical properties of alginate gel beads. Polym. Gels Networks 3: 311–330

    Article  Google Scholar 

  43. Vunjak-Novakovic G., S. A. Goldstein. (2005) Biomechanical principles of cartilage and bone tissue engineering. In: V. C. Mow, R. Huiskes. (eds) Basic Orthopaedic Biomechanics and Mechano-Biology. Philadelphia: Lippincott Williams and Wilkins, pp. 343–408

    Google Scholar 

  44. Vunjak-Novakovic G., I. Martin, B. Obradovic, S. Treppo, A. J. Grodzinsky, R. Langer, L. E. Freed. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17: 130–138

    Article  Google Scholar 

  45. Wong M., M. Siegrist, V. Gaschen, Y. Park, W. Graber, D. Studer. (2002) Collagen fibrillogenesis by chondrocytes in alginate. Tissue Eng. 8: 979–987

    Article  Google Scholar 

  46. Wong M., M. Siegrist, X. Wang, E. Hunziker. (2001) Development of mechanically stable alginate/chondrocyte constructs: effects of guluronic acid content and matrix synthesis. J. Orthop. Res. 19: 493–499

    Article  Google Scholar 

  47. Zhu W., V. C. Mow, T. J. Koob, D. R. Eyre. (1993) Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. J. Orthop. Res. 11: 771–781

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by Whitaker Foundation Special Development Award (Mow), Stanley Dicker and Shelly Ping Liu endowments (Mow), NIH grants R01 AR048287 and R21 AR052417 (Guo), and R21 AR052402-01A1 (Lu). The authors thank Drs. Gordana Vunjak-Novakovic and Jeremy J. Mao for their helpful suggestions and discussion of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van C. Mow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, L.Q., Jiang, J., Arnold, D.E. et al. Calcium Concentration Effects on the Mechanical and Biochemical Properties of Chondrocyte-Alginate Constructs. Cel. Mol. Bioeng. 1, 93–102 (2008). https://doi.org/10.1007/s12195-008-0014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-008-0014-x

Keywords

Navigation