Skip to main content
Log in

Impact of gadolinium concentration and cell oxygen levels on radiobiological characteristics of gadolinium neutron capture therapy technique in brain tumor treatment

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Neutron capture therapy (NCT) with various concentrations of gadolinium (157Gd) is one of the treatment modalities for glioblastoma (GBM) tumors. Current study aims to evaluate how variations of 157Gd concentration and cell oxygen levels can affect the relative biological effectiveness (RBE) of gadolinium neutron capture therapy (GdNCT) technique through a hybrid Monte Carlo (MC) simulation approach. At first, Snyder phantom including a spherical tumor was simulated by Geant4 MC code and relevant energy electron spectra to different 157Gd concentrations including 100, 250, 500, and 1000 ppm were calculated following the neutron irradiation of simulated phantom. Scored energy electron spectra were then imported to Monte Carlo damage simulation (MCDS) code to estimate RBE values (both RBESSB and RBEDSB) at different gadolinium concentrations and oxygen levels from 10 to 100%. The results indicate that variations of 157Gd can affect the energy spectrum of released secondary electrons including Auger electrons. Variation of gadolinium concentration from 100 to 1000 ppm in tumor region can change RBESSB and RBEDSB values by about 0.1% and 0.5%, respectively. Besides, maximum variations of 4.3% and 2% were calculated for RBEDSB and RBESSB when cell oxygen level changed from 10 to 100%. From the results, variations of considered gadolinium and oxygen concentrations during GdNCT can influence RBE values. Nevertheless, due to the not remarkable changes in the intensity of Auger electrons, a slight difference in RBE values would be expected at various 157Gd concentrations, although considerable RBE changes were calculated relevant to the oxygen alternations inside tumor tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Takagaki M, Hosmane NS. Gadolinium neutron capture therapy for malignant brain tumors. Aino J. 2008;6.

  2. Hottinger AF, Yoon H, DeAngelis LM, Abrey LE. Neurological outcome of long-term glioblastoma survivors. J Neurooncol. 2009;95:301–5.

    Article  PubMed  Google Scholar 

  3. Farhood B, Samadian H, Ghorbani M, Zakariaee SS, Knaup C. Physical, dosimetric and clinical aspects and delivery systems in neutron capture therapy. Rep Pract Oncol Radiother. 2018;23:462–73.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Takagaki M, Tomaru N, Maguire JA, Hosmane NS. Future applications of Boron and Gadolinium neutron capture therapy. In: Hosmane NS, editor. Boron science, new technologies and applications. Boca Raton: CRC Press; 2011. p. 243–76.

    Google Scholar 

  5. Pozzi EC, Cardoso JE, Colombo LL, Thorp S, Monti Hughes A, Molinari AJ, et al. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model. Radiat Environ Biophys. 2012;51:331–9.

    Article  PubMed  Google Scholar 

  6. Nakagawa N, Akai F, Fukawa N, Fujita Y, Suzuki M, Ono K, Taneda M. Early effects of boron neutron capture therapy on rat glioma models. Brain Tumor Pathol. 2007;24:7–13.

    Article  PubMed  Google Scholar 

  7. Kanygin VV, Kichigin AI, Krivoshapkin AL, Taskaev SY. Perspectives of boron-neutron capture therapy of malignant brain tumors. In: AIP Conference Proceedings. 2017. p. 020030.

  8. Enger SA, Giusti V, Fortin MA, Lundqvist H, Rosenschöld P. Dosimetry for gadolinium neutron capture therapy (GdNCT). Radiat Measure. 2013;59:233–40.

    Article  ADS  CAS  Google Scholar 

  9. Safavi-Naeini M, Chacon A, Guatelli S, Franklin DR, Bambery K, Gregoire MC, et al. Opportunistic dose amplification for proton and carbon ion therapy via capture of internally generated thermal neutrons. Sci Rep. 2018;8:16257.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Kulabdullaev GA, Abdullaeva GA, Kim AA, Rakhmonov TT, Kurmantaev A. About radiation innatGd for neutron capture therapy. J Health Sci. 2016;4:35–44.

    Article  Google Scholar 

  11. Masiakowski JT, Horton JL, Peters LJ. Gadolinium neutron capture therapy for brain tumors: a computer study. Med Phys. 1992;19:1277–84.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang DG, Feygelman V, Moros EG, Latifi K, Zhang GG. Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy. PLoS ONE. 2014;9: e109389.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. De Stasio G, Rajesh D, Casalbore P, Daniels MJ, Erhardt RJ, Frazer BH, et al. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy? Neurol Res. 2005;27:387–98.

    Article  PubMed  Google Scholar 

  14. Salt C, Lennox AJ, Takagaki M, Maguire JA, Hosmane NS. Boron and gadolinium neutron capture therapy. Russ Chem Bull. 2004;53:1871–88.

    Article  CAS  Google Scholar 

  15. Martin RF, Feinendegen LE. The quest to exploit the auger effect in cancer radiotherapy-a reflective review. Int J Radiat Biol. 2016;92:617–32.

    Article  CAS  PubMed  Google Scholar 

  16. Yasui LS, Andorf C, Schneider L, Kroc T, Lennox A, Saroja KR. Gadolinium neutron capture in glioblastoma multiform cells. Int J Radiat Biol. 2008;84:1130–9.

    Article  CAS  PubMed  Google Scholar 

  17. Chan CC, Chen FH, Hsiao YY. Impact of hypoxia on relative biological effectiveness and oxygen enhancement ratio for a 62-MeV therapeutic proton beam. Cancers. 2021;13:2997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ito A, Nakano H, Kusano Y, Hirayama R, Furusawa Y, Murayama C, et al. Contribution of indirect action to radiation-induced mammalian cell inactivation: dependence on photon energy and heavy-ion LET. Radiat Res. 2006;165:703–12.

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Nickoloff JA, Taylor L, Sharma N, Kato TA. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. Cancer Drug Resist. 2021;4:244.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Snyder WS, Ford MR, Warner GG, Fisher HL. Estimates for absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J Nucl Med Suppl. 1969;3:47.

    Google Scholar 

  21. White DR, Griffith RV, Wilson IJ. Report 46- Photon, electron, proton and neutron interaction data for body tissues. J ICRU. 1992;28:171.

    Google Scholar 

  22. Goorley T, Zamenhof R, Nikjoo H. Calculated DNA damage from gadolinium Auger electrons and relation to dose distributions in a head phantom. Int J Radiat Biol. 2004;80:933–40.

    Article  CAS  PubMed  Google Scholar 

  23. Avagyan R, Avetisyan R, Ivanyan V, Kerobyan I. GEANT4 simulations of a beam shaping assembly design and optimization for thermal/epithermal neutrons. Acta Phys Pol B. 2017;48:10.

    Article  Google Scholar 

  24. Karger CP, Peschke P. RBE and related modeling in carbon-ion therapy. Phys Med Biol. 2017;63:01TR02.

    Article  PubMed  Google Scholar 

  25. Stewart R, Yu V, Georgakilas A, Koumenis C, Park J, Carlson D. Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat Res. 2011;176:587–602.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Semenenko VA, Stewart RD. A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation. Radiat Res. 2004;161:451–7.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Semenenko VA, Stewart RD. Fast Monte Carlo simulation of DNA damage formed by electrons and light ions. Phys Med Biol. 2006;51:1693–706.

    Article  CAS  PubMed  Google Scholar 

  28. Hsiao YY, Hung TH, Tu SJ, Tung CJ. Fast Monte Carlo simulation of DNA damage induction by Auger-electron emission. Int J Radiat Biol. 2014;90:392–400.

    Article  CAS  PubMed  Google Scholar 

  29. Kalospyros SA, Gika V, Nikitaki Z, Kalamara A, Kyriakou I, Emfietzoglou D, et al. Monte Carlo simulation-based calculations of complex DNA damage for incidents of environmental ionizing radiation exposure. Appl Sci. 2021;11:8985.

    Article  CAS  Google Scholar 

  30. Stewart RD, Streitmatter SW, Argento DC, Kirkby C, Goorley JT, Moffitt G, et al. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions. Phys Med Biol. 2015;60:8249–74.

    Article  CAS  PubMed  Google Scholar 

  31. Wang CC, Hsiao Y, Lee CC, Chao TC, Wang CC, Tung CJ. Monte Carlo simulations of therapeutic proton beams for relative biological effectiveness of double-strand break. Int J Radiat Biol. 2012;88:158–63.

    Article  CAS  PubMed  Google Scholar 

  32. Chatzipapas KP, Papadimitroulas P, Emfietzoglou D, Kalospyros SA, Hada M, Georgakilas AG, et al. Ionizing radiation and complex DNA damage: quantifying the radiobiological damage using Monte Carlo simulations. Cancers. 2020;12:799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ackerman NL, de la Fuente RL, Falzone N, Vallis KA, Bernal MA. Targeted alpha therapy with 212Pb or 225Ac: Change in RBE from daughter migration. Phys Med. 2018;51:91–8.

    Article  PubMed  Google Scholar 

  34. Duan D, Han Y, Tu Z, Guo H, Zhang Z, Shi Y, et al. Gadolinium neutron capture reaction-induced nucleodynamic therapy potentiates antitumor immunity. CCS Chem. 2023. https://doi.org/10.31635/ccschem.023.202202488.

    Article  Google Scholar 

  35. Cerullo N, Bufalino D, Daquino G. Progress in the use of gadolinium for NCT. Appl Radiat Isot. 2009;67:S157–60.

    Article  CAS  PubMed  Google Scholar 

  36. Reniers B, Liu D, Rusch T, Verhaegen F. Calculation of relative biological effectiveness of a low-energy electronic brachytherapy source. Phys Med Biol. 2008;53:7125–35.

    Article  PubMed  Google Scholar 

  37. Shamsabadi R, Baghani HR, Azadegan B, Mowlavi AA. Impact of spherical applicator diameter on relative biologic effectiveness of low energy IORT X-rays: a hybrid Monte Carlo study. Phys Med. 2020;80:297–307.

    Article  PubMed  Google Scholar 

  38. Yasui L, Owens K. Necrosis is not induced by gadolinium neutron capture in glioblastoma multiforme cells. Int J Radiat Biol. 2012;88:980–90.

    Article  CAS  PubMed  Google Scholar 

  39. Humm JL, Howell RW, Rao DV. Dosimetry of Auger-electron-emitting radionuclides: report no. 3 of AAPM Nuclear Medicine Task Group No. 6. Med Phys. 1995;21:1901–15.

    Article  Google Scholar 

  40. Matsumura A, Zhang T, Nakai K, Endo K, Kumada H, Yamamoto T, et al. Combination of boron and gadolinium compounds for neutron capture therapy. An in vitro study. J Exp Clin Cancer Res. 2005;24:93–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Baghani.

Ethics declarations

Conflict of interest

The authors have no competing interest to declare that are relevant to the content of this article. No funds, grants or other support was received for conducting this study.

Ethical approval

No approval of research ethics committee was required to accomplish the goals of this study because of the review nature of conducted study.

Informed consent

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsabadi, R., Baghani, H.R. Impact of gadolinium concentration and cell oxygen levels on radiobiological characteristics of gadolinium neutron capture therapy technique in brain tumor treatment. Radiol Phys Technol 17, 135–142 (2024). https://doi.org/10.1007/s12194-023-00758-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00758-7

Keywords

Navigation