Skip to main content
Log in

Quantitative comparison between DNA damage RBE of GdNCT and BNCT during brain tumor irradiation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study aims to quantitatively evaluate the Relative biological effectiveness (RBE) values relevant to two neutron capture therapy (NCT) techniques with Boron and Gadolinium through a hybrid Monte Carlo (MC) simulation. Variations of 10B and 157Gd concentration in tumor tissue had a negligible impact on the RBE (RBESSB and RBEDSB) values. The obtained RBEDSB values for BNCT were remarkably higher than those of GdNCT. On the other hand, RBESSB values of GdNCT were greater than the obtained values for BNCT. Hence, BNCT has more strength in tumor cell killing due to the higher RBEDSB values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Goorley JT, Kiger WS, Zamenhof RG (2002) Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models. Med Phys 29:145–156

    Article  CAS  PubMed  Google Scholar 

  2. Lee W, Kim KW, Lim JE, Sarkar S, Kim JY, Chang Y et al (2022) In vivo evaluation of the effects of combined boron and gadolinium neutron capture therapy in mouse models. Sci Rep 12:13360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carlsson J, Forssell-Aronsson E, Glimelius B, Swedish Cancer Society Investigation Group T (2002) Radiation therapy through activation of stable nuclides. Acta Oncol 41:629–634

    Article  CAS  PubMed  Google Scholar 

  4. Zhang T, Matsumura A, Yamomoto T (2002) In: Sauervein W, Moos R, Wittig A (eds) Research and Development in NCT. Monduzzi Editore International Proceedings Division, pp 807–812

  5. Takagaki M, Tomaru N, Maguire JA, Hosmane NS (2011) In: Hosmane NS (ed) Boron science: new technologies and applications. CRC Press, New Yourk

  6. Barth RF, Coderre JA, Vicente MG, Blue TE (2005) Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 11:3987–4002

    Article  CAS  PubMed  Google Scholar 

  7. Slatkin DN (1991) A history of boron neutron capture therapy of brain tumors. Postulation of a brain radiation dose tolerance limit. Brain 114:1609–1629

    Article  PubMed  Google Scholar 

  8. Barth RF (2003) Boron neutron capture therapy: a critical assessment. J Neurooncol 62:1–210

    Article  PubMed  Google Scholar 

  9. Kaur M, Singh P, Singh K, Gaharwar US, Meena R, Kumar M et al (2020) Boron nitride (10BN) a prospective material for treatment of cancer by boron neutron capture therapy (BNCT). Mater Lett 259:126832

    Article  CAS  Google Scholar 

  10. He H, Li J, Jiang P, Tian S, Wang H, Fan R et al (2021) The basis and advances in clinical application of boron neutron capture therapy. Radiat Oncol 16:216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu K, Yang Z, Zhang L, Xie L, Wang L, Xu H et al (2020) Boron agents for neutron capture therapy. Coord Chem Rev 40:213139

    Article  Google Scholar 

  12. Hartman T, Carlsson J (1994) Radiation dose heterogeneity in receptor and antigen mediated boron neutron capture therapy. Radiat Oncol 31:61–75

    Article  CAS  Google Scholar 

  13. Monti Hughes A, Schwint AE (2022) Animal tumor models for boron neutron capture therapy studies (excluding central nervous system solid tumors). Cancer Biother Radiopharm

  14. Narmani A, Farhood B, Haghi-Aminjan H, Mortezazadeh T, Aliasgharzadeh A, Mohseni M et al (2018) Gadolinium nanoparticles as diagnostic and therapeutic agents: their delivery systems in magnetic resonance imaging and neutron capture therapy. J Drug Deliv Sci Technol 44:457–466

    Article  CAS  Google Scholar 

  15. Stepanek J (2003) Emission spectra of Gadolinium-158. Med Phys 30:41–43

    Article  CAS  PubMed  Google Scholar 

  16. Enger SA, Giusti V, Fortin MA, Lundqvist H, afRosenschöld PM (2013) Dosimetry for gadolinium neutron capture therapy (GdNCT). Radiat Meas 59:233–240

    Article  CAS  Google Scholar 

  17. Sauerwein W, Zurlo A (2002) EORTC Boron Neutron Capture Therapy Group. The EORTC boron neutron capture therapy (BNCT) group: achievements and future projects. Eur J Cancer 38:31–34

    Article  Google Scholar 

  18. Jung KH, Park JA, Kim JY, Kim MH, Oh S, Kim HK et al (2018) Image-guided neutron capture therapy using the Gd-DO3A-BTA complex as a new combinatorial treatment approach. Contrast Media Mol Imaging 2018:3727109

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tsai JY, Chen FH, Hsieh TY, Hsiao YY (2015) Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions. J Radiat Res 56:691–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Snyder WS, Ford MR, Warner GG, Fisher HL (1996) Estimates for absorbed fractions for mono energetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J Nucl Med Suppl 3:47

    Google Scholar 

  21. White DR, Griffith RV, Wilson IJ (1992) Report 46- Photon, electron, proton and neutron interaction data for body tissues. J ICRU 28

  22. Deagostino A, Protti N, Alberti D, Boggio P, Bortolussi S, Altieri S, Crich SG (2016) Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications. Future Med Chem 8:899–917

    Article  CAS  PubMed  Google Scholar 

  23. Culbertson CN, Jevremovic T (2003) Computational assessment of improved cell-kill by gadolinium-supplemented boron neutron capture therapy. Phys Med Biol 48(23):3943

    Article  PubMed  Google Scholar 

  24. Evaluated Nuclear Data File (ENDF). https://www.nndc.bnl.gov/endf/. Accessed 23 Dec 2023

  25. De Stasio G, Casalbore P, Pallini R, Gilbert B, Sanita F, Ciotti MT et al (2001) Gadolinium in human glioblastoma cells for gadolinium neutron capture therapy. Cancer Res 6:4272–4277

    Google Scholar 

  26. Streitmatter SW, Stewart RD, Moffitt G, Jevremovic T (2020) Mechanistic modeling of the relative biological effectiveness of boron neutron capture therapy. Cells 9:2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qi J, Geng C, Tang X, Tian F, Han Y, Liu H et al (2021) Effect of spatial distribution of boron and oxygen concentration on DNA damage induced from boron neutron capture therapy using Monte Carlo simulations. Int J Radiat Biol 97:986–996

    Article  CAS  PubMed  Google Scholar 

  28. Stewart RD, Streitmatter SW, Argento DC, Kirkby C, Goorley JT, Moffitt G et al (2015) Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions. Phys Med Biol 60:8249

    Article  CAS  PubMed  Google Scholar 

  29. Hsiao Y, Stewart RD (2007) Monte Carlo simulation of DNA damage induction by x-rays and selected radioisotopes. Phys Med Biol 53:233

    Article  PubMed  Google Scholar 

  30. Shamshiri P, Forozani G, Zabihi A (2019) An investigation of the physics mechanism based on DNA damage produced by protons and alpha particles in a realistic DNA model. Nucl Instrum Methods Phys Res B 454:40–44

    Article  CAS  Google Scholar 

  31. Zolfaghari M, Sedaghatizadeh M (2016) Design of thermal neutron beam based on an electron linear accelerator for BNCT. Appl Radiat Isot 118:149–153

    Article  CAS  PubMed  Google Scholar 

  32. Sastry KS (1992) Biological effects of the Auger emitter iodine-125: a review. Report No. 1 of AAPM Nuclear Medicine Task Group No. 6. Med phys 19:1361–1370

    Article  CAS  PubMed  Google Scholar 

  33. Hoglund E, Blomquist E, Carlsson J, Stenerl€ow B (2000) DNA damage induced by radiation of different linear energy transfer: initial fragmentation. Int J Radiat Biol 76(4):539–547

    Article  CAS  PubMed  Google Scholar 

  34. Hada M, Georgakilas AG (2008) Formation of clustered DNA damage after high-LET irradiation: a review. J Radiat Res 49:203–210

    Article  CAS  PubMed  Google Scholar 

  35. De la Fuente RL, Incerti S, Francis Z, Bernal MA (2018) Accounting for radiation-induced indirect damage on DNA with the Geant 4-DNA code. Phys Med 51:108–116

    Article  Google Scholar 

  36. Cerullo N, Bufalino D, Daquino G (2009) Progress in the use of gadolinium for NCT. Appl Radiat Isot 67:S157–S160

    Article  CAS  PubMed  Google Scholar 

  37. Miller GA Jr, Hertel NE, Wehring BW, Horton JL (1993) Gadolinium neutron capture therapy. Nucl Technol 103:320–331

    Article  CAS  Google Scholar 

  38. Salt C, Lennox AJ, Takagaki M, Maguire JA, Hosmane NS (2004) Boron and gadolinium neutron capture therapy. Russ Chem Bull 53:1871–1888

    Article  CAS  Google Scholar 

  39. Enger SA, Rezaei A, Munck af Rosenschöld P, Lundqvist H (2006) Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy. Med Phys 33:46–51

    Article  PubMed  Google Scholar 

  40. Protti N, Geninatti-Crich S, Alberti D, Lanzardo S, Deagostino A, Toppino A et al (2015) Evaluation of the dose enhancement of combined 10B+157Gd neutron capture therapy (NCT). Radiat Prot Dosim 166:369–373

    Article  CAS  Google Scholar 

  41. Kanygin V, Zaboronok A, Kichigin A, Petrova E, Guselnikova T, Kozlov A et al (2023) Gadolinium neutron capture therapy for cats and dogs with spontaneous tumors using Gd-DTPA. Vet Sci 10(4):274

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RS: Methodology, Validation, Formal analysis, Investigation, Data Curation, Investigation, Writing—Original Draft, Writing—Review and Editing. HRB: Conceptualization, Methodology, Formal analysis, Writing—Review and Editing, Visualization, Project Administration, supervision.

Corresponding author

Correspondence to Hamid Reza Baghani.

Ethics declarations

Conflict of interest

The authors have no competing interest to declare that are relevant to the content of this article. No funds, grants, or other support were received for conducting study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsabadi, R., Baghani, H.R. Quantitative comparison between DNA damage RBE of GdNCT and BNCT during brain tumor irradiation. J Radioanal Nucl Chem 333, 1379–1387 (2024). https://doi.org/10.1007/s10967-024-09382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09382-0

Keywords

Navigation