Skip to main content
Log in

Effect of shape of automatic dose rate control and wedge compensation filter on radiation dose in an angiography system with a flat-panel detector

  • Technical Note
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The purpose was to investigate air-kerma area product (PKA) and entrance surface air-kerma rate (\(\dot{K}\)a,e) on the effect of the shape of automatic dose rate control (ADRC) in the presence of a wedge compensation filter. We compared and evaluated the variability of the X-ray output using a combination of wedge compensation filters and the ADRC. Two ADRC shapes (round and square) and three poly-methyl-methacrylate thicknesses (15, 20, and 25 cm) were used. A wedge compensation filter was inserted 2 cm at a time, up to 6 cm. When the wedge compensation filter was inserted to 6 cm for 20 cm of poly-methyl-methacrylate, the X-ray output fluctuated significantly. The PKA was reduced by 39% when the wedge compensation filter was inserted to 6 cm and by 59% when it was inserted to 4 cm under round-type for 20 cm poly-methyl-methacrylate. The shape of the ADRC affects \(\dot{K}\)a,e and PKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hajiha M, Smith J, Amasyali AS, Groegler J, Shah M, Alsyouh M, Krause A, You H, Brown J, Li A, Goyne A, Baldwin DD, Stokes P, Hsi R, Baldwin DD. The effect of operative field instrument clutter during intraoperative fluoroscopy on radiation exposure. J Endourol. 2019;33(8):626–33. https://doi.org/10.1089/end.2019.0285.

    Article  PubMed  Google Scholar 

  2. Suleiman OH, Conway BJ, Quinn P, Antonsen RG, Slayton RJ, Spelic DC. Nationwide survey of fluoroscopy: radiation dose and image quality. Radiology. 1997;203(2):471–6. https://doi.org/10.1148/radiology.203.2.9114107.

    Article  CAS  PubMed  Google Scholar 

  3. Kuon E, Glaser C, Dahm JB. Effective techniques for reduction of radiation dosage to patients undergoing invasive cardiac procedures. Br J Radiol. 2003;76(906):406–13. https://doi.org/10.1259/bjr/82051842.

    Article  CAS  PubMed  Google Scholar 

  4. Stephen R, Daniel RB. Minimizing radiation dose to patient and staff during fluoroscopic, nasoenteral tube insertions. Br J Radiol. 1992;65(770):162–6. https://doi.org/10.1259/0007-1285-65-770-162.

    Article  Google Scholar 

  5. Axelsson B. Optimisation in fluoroscopy. Biomed Imaging Interv J. 2007;3(2):1–5. https://doi.org/10.2349/biij.3.2.e47.

    Article  Google Scholar 

  6. Vañó E, Miller DL, Martin CJ, Rehani MM, Kang K, Rosenstein M, Ortiz-López P, Mattsson S, Padovani R, Rogers A. ICRP publication 135: Diagnostic reference levels in medical imaging. Ann ICRP. 2017;46(1). https://doi.org/10.1177/0146645317717209.

  7. Chida K, Saito H, Kagaya Y, Kohzuki M, Takai Y, Takahashi S, Yamada S, Zuguchi M. Indicators of the maximum radiation dose to the skin during percutaneous coronary intervention in different target vessels. Catheter Cardiovasc Interv. 2006;68(2):236–41. https://doi.org/10.1002/ccd.20830.

    Article  PubMed  Google Scholar 

  8. Chida K, Saito H, Otani H, Kohzuki M, Takahashi S, Yamada S, Shirato K, Zuguchi M. Relationship between fluoroscopic time, dose–area product, body weight, and maximum radiation skin dose in cardiac interventional procedures. Am J Roentgenol. 2006;186(3):774–8. https://doi.org/10.2214/AJR.04.1653.

    Article  Google Scholar 

  9. Chida K, Kagaya Y, Saito H, Takai Y, Takahashi S, Yamada S, Kohzuki M, Zuguchi M. Total entrance skin dose: an effective indicator of maximum radiation dose to the skin during percutaneous coronary intervention. Am J Roentgenol. 2007;189(4):224–7. https://doi.org/10.2214/AJR.07.2422.

    Article  Google Scholar 

  10. Chida K, Kagaya Y, Saito H, Ishibashi T, Takahashi S, Zuguchi M. Evaluation of patient radiation dose during cardiac interventional procedures: what is the most effective method? Acta Radiol. 2009;50(5):474–81. https://doi.org/10.1080/02841850902852752.

    Article  CAS  PubMed  Google Scholar 

  11. Chida K, Fuda K, Kagaya Y, Saito H, Takai Y, Kohzuki M, Takahashi S, Yamada S, Zuguchi M. Influence of the target vessel on the location and area of maximum skin dose during percutaneous coronary intervention. Acta Radiol. 2007;48(8):846–50. https://doi.org/10.1080/02841850701468875.

    Article  CAS  PubMed  Google Scholar 

  12. Muhogora WE, Ahmed NA, Almosabihi A, Alsuwaidi JS, Beganovic A, Ciraj-Bejelac O, Kabuya FK, Krisanachinda A, Milakovic M, Mukwada G, Ramanandraiba MJ, Rehani MM, Rouzitalab J, Shandorf C. Patient doses in radiographic examinations in 12 countries in Asia, Africa, and Eastern Europe: initial results from IAEA projects. Am J Roentgenol. 2008;190(6):1453–61. https://doi.org/10.2214/AJR.07.3039.

    Article  Google Scholar 

  13. Cambers CE, Fetterly KA, Holzer R, Lin PJP, Blankenship JC, Balter S, Laskey WK. Radiation safety program for the cardiac catheterization laboratory. Catheter Cardiovasc Interv. 2011;77(4):546–56. https://doi.org/10.1002/ccd.22867.

    Article  Google Scholar 

  14. Chida K, Kato M, Kagaya Y, Zuguchi M, Saito H, Ishibashi T, Takahashi S, Yamada S, Takai Y. Radiation dose and radiation protection for patients and physicians during interventional procedure. J Radiat Res. 2010;51(2):97–105. https://doi.org/10.1269/jrr.09112.

    Article  PubMed  Google Scholar 

  15. Rauch P, Lin PJP, Balter S, Fukuda A, Goode A, Hartwell G, LaFrance T, Nickoloff E, Shepard J, Strauss K. Functionality and operation of fluoroscopic automatic brightness control/automatic dose rate control logic in modern cardiovascular and interventional angiography systems: a report of task group 125 radiography/fluoroscopy subcommittee, imaging physics committee. Sci Council Med Phys. 2012;39(5):2826–8. https://doi.org/10.1118/1.4704524.

    Article  Google Scholar 

  16. International Electrotechnical Commission. Medical electrical equipment: Part 2-43 particular requirements for the basic safety and essential performance of X ray equipment for interventional procedures (IEC 60601-2-43), 2nd ed. IEC; 2010.

  17. Seissl J, Eschenbacher H. X-ray diagnostic apparatus with a filter device. United States Patent 5,680,435. 1997

  18. Lin PJP, Goode AR, Corwin FD. Review and investigation of automatic brightness/dose rate control logic of fluoroscopic imaging systems in cardiovascular interventional angiography. Radiol Phys Technol. 2022;15(1):6–24. https://doi.org/10.1007/s12194-022-00649-3.

    Article  PubMed  Google Scholar 

  19. Lin PJP. The operating logic of automatic dose control of fluoroscopy system in conjunction with spectral shaping filters. Med Phys. 2007;34(8):3169–72. https://doi.org/10.1118/1.2752576.

    Article  PubMed  Google Scholar 

  20. Cousins C, Miller DL, Bernardi G, Rehani MM, Schofield P, Vañó E, Einstein AJ, Geiger B, Heintz P, Padovani R, Sim KH. International commission on radiological protection. ICRP publication 120: radiological protection in cardiology. Ann ICRP. 2013;42(1):1–125. https://doi.org/10.1016/j.icrp.2012.09.001.

    Article  CAS  PubMed  Google Scholar 

  21. Inaba Y, Chida K, Murabayashi Y. Endo Mime, Otomo Kazuki, Zuguchi Masayuki; an initial investigation of a wireless patient radiation dosimeter for use in interventional radiology. Radiol Phys Technol. 2020;13:321–6. https://doi.org/10.1007/s12194-020-00575-2.

    Article  PubMed  Google Scholar 

  22. Chida K. What are useful methods to reduce occupation radiation exposure among radiological medical workers, especially for interventional radiology personnel? Radiol Phys Technol. 2022;15:101–5. https://doi.org/10.1007/s12194-022-00660-8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Kakuta.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest to declare.

Human and animal rights

There were no animals or humans involved in this study.

Informed consent

There were no human subjects involved in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakuta, K., Nemoto, S. & Ikeda, M. Effect of shape of automatic dose rate control and wedge compensation filter on radiation dose in an angiography system with a flat-panel detector. Radiol Phys Technol 16, 560–568 (2023). https://doi.org/10.1007/s12194-023-00742-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00742-1

Keywords

Navigation