Skip to main content
Log in

Dosimetric effects of quality assurance-related setup errors in passive proton therapy for prostate cancer with and without a hydrogel spacer

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the effect of quality assurance (QA)-related setup errors in passive proton therapy for prostate cancer with and without a hydrogel spacer. We used 20 typical computed tomography (CT) images of prostate cancer: 10 patients with and 10 patients without spacers. The following 12 model errors were assumed: output error ± 2%, range error ± 1 mm, setup error ± 1 mm for three directions, and multileaf collimator (MLC) position error ± 1 mm. We created verification plans with model errors and compared the prostate-rectal (PR) distance and dose indices with and without the spacer. The mean PR distance at the isocenter was 1.1 ± 1.3 mm without the spacer and 12.9 ± 2.9 mm with the spacer (P < 0.001). The mean rectum V53.5 GyE, V50 GyE, and V34.5 GyE in the original plan were 2.3%, 4.1%, and 12.1% without the spacer and 0.1%, 0.4%, and 3.3% with the spacer (P = 0.0011, < 0.001, and < 0.001). The effects of the range and lateral setup errors were small; however, the effects of the vertical/long setup and MLC error were significant in the cases without the spacer. The means of the maximum absolute change from original plans across all scenarios in the rectum V53.5 GyE, V50 GyE, and V34.5 GyE were 1.3%, 1.5%, and 2.3% without the spacer, and 0.2%, 0.4%, and 1.3% with the spacer (P < 0.001, < 0.001, and = 0.0019). This study indicated that spacer injections were also effective in reducing the change in the rectal dose due to setup errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nakajima K, Iwata H, Ogino H, et al. Acute toxicity of image-guided hypofractionated proton therapy for localized prostate cancer. Int J Clin Oncol. 2018;23(2):353–60. https://doi.org/10.1007/s10147-017-1209-8.

    Article  PubMed  Google Scholar 

  2. Li Z. Prescribing, recording, and reporting proton-beam therapy. Int J Radiat Oncol. 2009;73(5):1602. https://doi.org/10.1016/j.ijrobp.2008.10.084.

    Article  Google Scholar 

  3. Iwata H, Ishikawa H, Takagi M, et al. Long-term outcomes of proton therapy for prostate cancer in Japan: a multi-institutional survey of the Japanese Radiation Oncology Study Group. Cancer Med. 2018;7(3):677–89. https://doi.org/10.1002/cam4.1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hedrick SG, Fagundes M, Case S, et al. Validation of rectal sparing throughout the course of proton therapy treatment in prostate cancer patients treated with SpaceOAR®. J Appl Clin Med Phys. 2017;18(1):82–9. https://doi.org/10.1002/acm2.12010.

    Article  PubMed  Google Scholar 

  5. Morita M, Fukagai T, Hirayama K, et al. Placement of SpaceOAR hydrogel spacer for prostate cancer patients treated with iodine-125 low-dose-rate brachytherapy. Int J Urol. 2020;27(1):60–6. https://doi.org/10.1111/iju.14123.

    Article  CAS  PubMed  Google Scholar 

  6. Su Z, Slopsema R, Flampouri S, et al. Impact of intrafraction prostate motion on clinical target coverage in proton therapy: a simulation study of dosimetric differences in two delivery techniques. J Appl Clin Med Phys. 2019;20(10):67–73. https://doi.org/10.1002/acm2.12714.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chung H, Polf J, Badiyan S, et al. Rectal dose to prostate cancer patients treated with proton therapy with or without rectal spacer. J Appl Clin Med Phys. 2017;18(1):32–9. https://doi.org/10.1002/acm2.12001.

    Article  PubMed  Google Scholar 

  8. Thörnqvist S, Muren LP, Bentzen L, et al. Degradation of target coverage due to inter-fraction motion during intensity-modulated proton therapy of prostate and elective targets. Acta Oncol (Madr). 2013;52(3):521–7. https://doi.org/10.3109/0284186X.2012.752860.

    Article  Google Scholar 

  9. Kubota Y, Kawamura H, Sakai M, et al. Changes in rectal dose due to alterations in beam angles for setup uncertainty and range uncertainty in carbon-ion radiotherapy for prostate cancer. PLoS ONE. 2016;11(4):1–11. https://doi.org/10.1371/journal.pone.0153894.

    Article  CAS  Google Scholar 

  10. Tang S, Deville C, McDonough J, et al. Effect of intrafraction prostate motion on proton pencil beam scanning delivery: a quantitative assessment. Int J Radiat Oncol Biol Phys. 2013;87(2):375–82. https://doi.org/10.1016/j.ijrobp.2013.05.048.

    Article  PubMed  Google Scholar 

  11. Andersen AG, Casares-Magaz O, Muren LP, et al. A method for evaluation of proton plan robustness towards inter-fractional motion applied to pelvic lymph node irradiation. Acta Oncol (Madr). 2015;54(9):1643–50. https://doi.org/10.3109/0284186X.2015.1067720.

    Article  Google Scholar 

  12. Malyapa R, Lowe M, Bolsi A, et al. Evaluation of robustness to setup and range uncertainties for head and neck patients treated with pencil beam scanning proton therapy. Int J Radiat Oncol Biol Phys. 2016;95(1):154–62. https://doi.org/10.1016/j.ijrobp.2016.02.016.

    Article  PubMed  Google Scholar 

  13. Wohlfahrt P, Möhler C, Hietschold V, et al. Clinical implementation of dual-energy CT for proton treatment planning on pseudo-monoenergetic CT scans. Int J Radiat Oncol Biol Phys. 2017;97(2):427–34. https://doi.org/10.1016/j.ijrobp.2016.10.022.

    Article  PubMed  Google Scholar 

  14. Sejpal SV, Amos RA, Bluett JB, et al. Dosimetric changes resulting from patient rotational setup errors in proton therapy prostate plans. Int J Radiat Oncol Biol Phys. 2009;75(1):40–8. https://doi.org/10.1016/j.ijrobp.2008.08.042.

    Article  PubMed  Google Scholar 

  15. Oliver M, Bush K, Zavgorodni S, et al. Understanding the impact of RapidArc therapy delivery errors for prostate cancer. J Appl Clin Med Phys. 2011;12(3):32–43. https://doi.org/10.1120/jacmp.v12i3.3409.

    Article  PubMed Central  Google Scholar 

  16. Smith K, Balter P, Duhon J, et al. AAPM medical physics practice guideline 8.a.: linear accelerator performance tests. J Appl Clin Med Phys. 2017;18(4):23–39. https://doi.org/10.1002/acm2.12080.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bonfantini F, Giandini T, Meroni S, et al. Application of failure mode and effects analysis to optimization of linac quality controls protocol. Med Phys. 2019;46(6):2541–55. https://doi.org/10.1002/mp.13538.

    Article  PubMed  Google Scholar 

  18. O’Daniel JC, Yin FF. Quantitative approach to failure mode and effect analysis for linear accelerator quality assurance. Int J Radiat Oncol Biol Phys. 2017;98(1):56–62. https://doi.org/10.1016/j.ijrobp.2017.01.035.

    Article  PubMed  Google Scholar 

  19. Rucinski A, Brons S, Richter D, et al. Ion therapy of prostate cancer: daily rectal dose reduction by application of spacer gel. Radiat Oncol. 2015;10(1):1–10. https://doi.org/10.1186/s13014-015-0348-1.

    Article  CAS  Google Scholar 

  20. Juneja P, Kneebone A, Booth JT, et al. Prostate motion during radiotherapy of prostate cancer patients with and without application of a hydrogel spacer: a comparative study. Radiat Oncol. 2015;10(1):4–9. https://doi.org/10.1186/s13014-015-0526-1.

    Article  CAS  Google Scholar 

  21. Toshito T, Omachi C, Kibe Y, et al. A proton therapy system in Nagoya Proton Therapy Center. Australas Phys Eng Sci Med. 2016;39(3):645–54. https://doi.org/10.1007/s13246-016-0456-8.

    Article  PubMed  Google Scholar 

  22. Yasui K, Toshito T, Omachi C, et al. A patient-specific aperture system with an energy absorber for spot scanning proton beams: verification for clinical application. Med Phys. 2015. https://doi.org/10.1118/1.4935528.

    Article  PubMed  Google Scholar 

  23. Yasui K, Toshito T, Omachi C, et al. Evaluation of dosimetric advantages of using patient-specific aperture system with intensity-modulated proton therapy for the shallow depth tumor. J Appl Clin Med Phys. 2018;19(1):132–7. https://doi.org/10.1002/acm2.12231.

    Article  PubMed  Google Scholar 

  24. Yasui K, Toshito T, Omachi C, et al. Dosimetric verification of IMPT using a commercial heterogeneous phantom. J Appl Clin Med Phys. 2019;20(2):114–20. https://doi.org/10.1002/acm2.12535.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moyers MF, Miller DW, Bush DA, et al. Methodologies and tools for proton beam design for lung tumors. Int J Radiat Oncol Biol Phys. 2001;49(5):1429–38. https://doi.org/10.1016/S0360-3016(00)01555-8.

    Article  CAS  PubMed  Google Scholar 

  26. Arjomandy B, Sahoo N, Zhu XR, et al. An overview of the comprehensive proton therapy machine quality assurance procedures implemented at the University of Texas M. D. Anderson Cancer Center Proton Therapy Center-Houston. Med Phys. 2009;36(6):2269–82. https://doi.org/10.1118/1.3120288.

    Article  PubMed  Google Scholar 

  27. Klein EE, Hanley J, Bayouth J, et al. Task group 142 report: quality assurance of medical acceleratorsa. Med Phys. 2009;36(9):4197–212. https://doi.org/10.1118/1.3190392.

    Article  PubMed  Google Scholar 

  28. Arjomandy B, Taylor P, Ainsley C, et al. AAPM task group 224: comprehensive proton therapy machine quality assurance. Med Phys. 2019;46(8):e678-705. https://doi.org/10.1002/mp.13622.

    Article  PubMed  Google Scholar 

  29. Mok G, Benz E, Vallee JP, et al. Optimization of radiation therapy techniques for prostate cancer with prostate-rectum spacers: a systematic review. Int J Radiat Oncol Biol Phys. 2014;90(2):278–88. https://doi.org/10.1016/j.ijrobp.2014.06.044.

    Article  PubMed  Google Scholar 

  30. Polamraju P, Bagley AF, Williamson T, et al. Hydrogel spacer reduces rectal dose during proton therapy for prostate cancer: a dosimetric analysis. Int J Part Ther. 2019;5(4):23–31. https://doi.org/10.14338/ijpt-18-00041.1.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hatiboglu G, Pinkawa M, Vallée JP, et al. Application technique: placement of a prostate—rectum spacer in men undergoing prostate radiation therapy. BJU Int. 2012;110:647–52. https://doi.org/10.1111/j.1464-410X.2012.11373.x.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Shingo Hashimoto, Dr. Koichiro Nakajima, Dr. Yukiko Hattori, and the members of the NPTC who performed the treatment planning and accuracy management associated with this study.

Funding

This work was supported by JSPS KAKENHI Grant Number 19K17181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Yasui.

Ethics declarations

Conflict of interest

All authors have read the journal’s policy on conflicts of interest and have none to declare.

Ethical approval

This study did not involve any animal experiments. All the procedures involving human participants were conducted in accordance with the ethical standards of the institutional and/or national research committee as well as with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all the individuals included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omi, Y., Yasui, K., Shimomura, A. et al. Dosimetric effects of quality assurance-related setup errors in passive proton therapy for prostate cancer with and without a hydrogel spacer. Radiol Phys Technol 14, 328–335 (2021). https://doi.org/10.1007/s12194-021-00632-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-021-00632-4

Keywords

Navigation