Skip to main content
Log in

Heat shock in the springtime

  • Meeting Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

A collaborative workshop dedicated to the discussion of heat shock factors in stress response, development, and disease was held on April 22–24, 2014 at the Université Paris Diderot in Paris, France. Recent years have witnessed an explosion of interest in these highly conserved transcription factors, with biological roles ranging from environmental sensing to human development and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abane R, Mezger V (2010) Roles of heat shock factors in gametogenesis and development. FEBS J 277:4150–4172

    Article  CAS  PubMed  Google Scholar 

  • Ahlskog JK, Bjork JK, Elsing AN, Aspelin C, Kallio M, Roos-Mattjus P, Sistonen L (2010) Anaphase-promoting complex/cyclosome participates in the acute response to protein-damaging stress. Mol Cell Biol 30:5608–5620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anquez F, Courtade E, Sivery A, Suret P, Randoux S (2010) A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm. Opt Express 18:22928–22936

    Article  CAS  PubMed  Google Scholar 

  • Anquez F, El Y-BI, Randoux S, Suret P, Courtade E (2012) Cancerous cell death from sensitizer free photoactivation of singlet oxygen. Photochem Photobiol 88:167–174

    Article  CAS  PubMed  Google Scholar 

  • Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A 106:14914–14919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calderwood SK (2012) HSF1, a versatile factor in tumorogenesis. Curr Mol Med 12:1102–1107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho BR, Lee P, Hahn JS (2014) CK2-dependent inhibitory phosphorylation is relieved by Ppt1 phosphatase for the ethanol stress-specific activation of Hsf1 in Saccharomyces cerevisiae. Mol Micro 93:306–316

    Article  CAS  Google Scholar 

  • Craig EA, Gross CA (1991) Is hsp70 the cellular thermometer? Trends Biochem Sci 16:135–140

    Article  CAS  PubMed  Google Scholar 

  • El Fatimy R et al (2014) Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome. EMBO Mol Med 6:1043–1061

    Article  PubMed Central  PubMed  Google Scholar 

  • Elsing AN et al. (2014) Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival. J Cell Biol, in press

  • Eroglu B, Min JN, Zhang Y, Szurek E, Moskophidis D, Eroglu A, Mivechi NF (2014) An essential role for heat shock transcription factor binding protein 1 (HSBP1) during early embryonic development. Dev Biol 386:448–460

    Article  CAS  PubMed  Google Scholar 

  • Eymery A, Callanan M, Vourc’h C (2009) The secret message of heterochromatin: new insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription. Int J Dev Biol 53:259–268

    Article  CAS  PubMed  Google Scholar 

  • Fritah S et al (2009) Heat-shock factor 1 controls genome-wide acetylation in heat-shocked cells. Mol Biol Cell 20:4976–4984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujimoto M et al (2012) RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT. Mol Cell 48:182–194

    Article  CAS  PubMed  Google Scholar 

  • Goloudina AR, Demidov ON, Garrido C (2012) Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett 325:117–124

    Article  CAS  PubMed  Google Scholar 

  • Guertin MJ, Lis JT (2010) Chromatin landscape dictates HSF binding to target DNA elements. PLoS Genet 6:e1001114

    Article  PubMed Central  PubMed  Google Scholar 

  • Jego G et al. (2014) Dual regulation of SPI1/PU.1 transcription factor by heat shock factor 1 (HSF1) during macrophage differentiation of monocytes. Leukemia Feb 7, Epub ahead of print

  • Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Vourc’h C (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164:25–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Labbadia J, Morimoto RI (2014) Proteostasis and longevity: when does aging really begin? F1000Prime Rep 6:7

  • Le Masson F, Christians E (2011) HSFs and regulation of Hsp70.1 (Hspa1b) in oocytes and preimplantation embryos: new insights brought by transgenic and knockout mouse models. Cell Stress Chaperones 16:275–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Le Masson F et al (2011) Identification of heat shock factor 1 molecular and cellular targets during embryonic and adult female meiosis. Mol Cell Biol 31:3410–3423

    Article  PubMed Central  PubMed  Google Scholar 

  • Mendillo ML et al (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:549–562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mjahed H, Girodon F, Fontenay M, Garrido C (2012) Heat shock proteins in hematopoietic malignancies. Exp Cell Res 318:1946–1958

    Article  CAS  PubMed  Google Scholar 

  • Pennisi E (2013) The CRISPR craze. Science 341:833–836

    Article  CAS  PubMed  Google Scholar 

  • Petre I et al (2011) A simple mass-action model for the eukaryotic heat shock response and its mathematical validation. Natl Computing 10:595–612

    Article  Google Scholar 

  • Pierce A et al (2013) Over-expression of heat shock factor 1 phenocopies the effect of chronic inhibition of TOR by rapamycin and is sufficient to ameliorate Alzheimer’s-like deficits in mice modeling the disease. J Neurochem 124:880–893

    Article  CAS  PubMed  Google Scholar 

  • Pierce A, Wei R, Halade D, Yoo SE, Ran Q, Richardson A (2010) A novel mouse model of enhanced proteostasis: full-length human heat shock factor 1 transgenic mice. Biochem Biophys Res Commun 402:59–65

    Article  CAS  PubMed  Google Scholar 

  • Prahlad V, Cornelius T, Morimoto RI (2008) Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320:811–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raynes R, Pombier KM, Nguyen K, Brunquell J, Mendez JE, Westerheide SD (2013) The SIRT1 modulators AROS and DBC1 regulate HSF1 activity and the heat shock response. PLoS One 8:e54364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinke H, Saini C, Fleury-Olela F, Dibner C, Benjamin IJ, Schibler U (2008) Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. Genes Dev 22:331–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rieger TR, Morimoto RI, Hatzimanikatis V (2005) Mathematical modeling of the eukaryotic heat-shock response: dynamics of the hsp70 promoter. Biophys J 88:1646–1658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi A, Riccio A, Coccia M, Trotta E, La FS, Santoro MG (2014) The proteasome inhibitor bortezomib is a potent inducer of zinc finger AN1-type domain 2a gene expression: role of heat shock factor 1 (HSF1)-heat shock factor 2 (HSF2) heterocomplexes. J Biol Chem 289:12705–12715

    Article  CAS  PubMed  Google Scholar 

  • Santagata S et al (2013) Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 341:1238303

    Article  PubMed Central  PubMed  Google Scholar 

  • Schneider R, Linka RM, Reinke H (2014) HSP90 affects the stability of BMAL1 and circadian gene expression. J Biol Rhythms 29:87–96

    Article  CAS  PubMed  Google Scholar 

  • Shinkawa T et al (2011) Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Mol Biol Cell 22:3571–3583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor RC, Berendzen KM, Dillin A (2014) Systemic stress signalling: understanding the cell non-autonomous control of proteostasis. Nat Rev Mol Cell Biol 15:211–217

    Article  CAS  PubMed  Google Scholar 

  • Uchida S et al (2011) Impaired hippocampal spinogenesis and neurogenesis and altered affective behavior in mice lacking heat shock factor 1. Proc Natl Acad Sci U S A 108:1681–1686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Oosten-Hawle P, Morimoto RI (2014) Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses. J Exp Biol 217:129–136

    Article  PubMed  Google Scholar 

  • Vihervaara A, Sergelius C, Vasara J, Blom MA, Elsing AN, Roos-Mattjus P, Sistonen L (2013) Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci U S A 110:E3388–E3397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vihervaara A, Sistonen L (2014) HSF1 at a glance. J Cell Sci 127:261–266

    Article  CAS  PubMed  Google Scholar 

  • Vourc’h C, Biamonti G (2011) Transcription of Satellite DNAs in mammals. Prog Mol Subcell Biol 51:95–118

    Article  PubMed  Google Scholar 

  • Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitesell L, Lindquist S (2009) Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets 13:469–478

    Article  CAS  PubMed  Google Scholar 

  • Wirth D, Bureau F, Melotte D, Christians E, Gustin P (2004) Evidence for a role of heat shock factor 1 in inhibition of NF-kappaB pathway during heat shock response-mediated lung protection. Am J Physiol Lung Cell Mol Physiol 287:L953–L961

    Article  CAS  PubMed  Google Scholar 

  • Wirth D, Christians E, Li X, Benjamin IJ, Gustin P (2003) Use of Hsf1(−/−) mice reveals an essential role for HSF1 to protect lung against cadmium-induced injury. Toxicol Appl Pharmacol 192:12–20

    Article  CAS  PubMed  Google Scholar 

  • Zelin E, Zhang Y, Toogun OA, Zhong S, Freeman BC (2012) The p23 molecular chaperone and GCN5 acetylase jointly modulate protein-DNA dynamics and open chromatin status. Mol Cell 48:459–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the participants for their contribution. The workshop was sponsored by CNRS (PICS Program) and Fondation Jérôme Lejeune and was greatly facilitated by the excellent assistance of Geneviève Fournier, Xavier Jourdan (UMR71216), and Françoise Chevalier (UFR “Life Sciences”, Paris Diderot University). We also thank Déborah Bouvier and Aurélie de Thonel from the Mezger laboratory for their time and efforts toward making the workshop a success.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Mezger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morano, K.A., Sistonen, L. & Mezger, V. Heat shock in the springtime. Cell Stress and Chaperones 19, 753–761 (2014). https://doi.org/10.1007/s12192-014-0539-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-014-0539-y

Keywords

Navigation