Skip to main content
Log in

The structural stability and chaperone activity of artemin, a ferritin homologue from diapause-destined Artemia embryos, depend on different cysteine residues

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Diapause-destined embryos of the crustacean, Artemia franciscana, accumulate large amounts of an oligomeric, heat-stable, molecular chaperone termed artemin, a cysteine-enriched ferritin homologue. In this study, cysteines 22, 61, 166, and 172 of artemin were substituted with alanines, respectively yielding ArtC22A, ArtC61A, ArtC166A, and ArtC172A. Wild-type and modified artemins were synthesized in transformed bacteria and purified. As measured by heat-induced denaturation of citrate synthase in vitro, each substitution reduced chaperone activity, with ArtC172A the least active. Protein modeling indicated that C172 is close to a region of surface hydrophobicity, also present in ferritin, suggesting that this site contributes to chaperone activity. Only slight differences in oligomer molecular mass were apparent between artemin variants, but ArtC22A and ArtC61A displayed significantly reduced thermostability, perhaps due to the disruption of an inter-subunit disulphide bridge. In contrast, ArtC172A was thermostable, reflecting the location of C172 on the oligomer surface and that it contributes minimally to artemin stabilization. To our knowledge, this is the initial study of structure/function relationships within a ferritin homologue of importance in diapause and the first to indicate that a defined region of hydrophobicity contributes to artemin and ferritin chaperoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baraibar MA, Barbeito AG, Muhoberac BB, Vidal R (2008) Iron-mediated aggregation and a localized structural change characterize ferritin from a mutant light chain polypeptide that causes neurodegeneration. J Biol Chem 283:31679–31689

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Amons R, Clegg JS, Warner AH, MacRae TH (2003) Molecular characterization of artemin and ferritin from Artemia franciscana. Eur J Biochem 270:137–145

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Villeneuve TS, Garant KA, Amons R, MacRae TH (2007) Functional characterization of artemin, a ferritin homolog synthesized in Artemia embryos during encystment and diapause. FEBS J 274:1093–1011

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS (1994) Unusual response of Artemia franciscana embryos to prolonged anoxia. J Exp Zool 270:332–334

    Article  Google Scholar 

  • Clegg JS (1997) Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. J Exp Biol 200:467–475

    PubMed  Google Scholar 

  • Clegg JS, Jackson SA (1998) The metabolic status of quiescent and diapause embryos of Artemia franciscana (Kellogg). Arch Hydrobiol Spec Issues Adv Limnol 52:425–439

    Google Scholar 

  • Clegg JS, Willsie JK, Jackson SA (1999) Adaptive significance of a small heat shock/α-crystallin protein (p26) in encysted embryos of the brine shrimp, Artemia franciscana. Am Zool 39:836–847

    CAS  Google Scholar 

  • Clegg JS, Jackson SA, Popov VI (2000) Long-term anoxia in encysted embryos of the crustacean, Artemia franciscana: viability, ultrastructure, and stress proteins. Cell Tiss Res 301:433–446

    Article  CAS  Google Scholar 

  • De Graaf J, Amons R, MÖller W (1990) The primary structure of artemin from Artemia cysts. Eur J Biochem 193:737–750

    Article  PubMed  Google Scholar 

  • Drinkwater LE, Clegg JS (1991) Experimental biology of cyst diapause. In: Browne RA, Sorgeloos P, Trotman CNA (eds) Artemia biology. CRC, Boca Raton, pp 93–117

    Google Scholar 

  • Drinkwater LE, Crowe JH (1987) Regulation of embryonic diapause in Artemia: environmental and physiological signals. J Exp Zool 241:297–307

    Article  CAS  Google Scholar 

  • Fan R, Boyle AL, Cheong VV, Ng SL, Orner BP (2009) A helix swapping study of two protein cages. Biochemistry 48:5623–5630

    Article  CAS  PubMed  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203

    Article  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Jackson SA, Clegg JS (1996) Ontology of low molecular weight stress protein p26 during early development of the brine shrimp, Artemia franciscana. Dev Growth Differ 38:153–160

    Article  CAS  Google Scholar 

  • Kilic MA, Spiro S, Moore GR (2003) Stability of a 24-meric homopolymer: comparative studies of assembly-defective mutants of Rhodobacter capsulatus bacterioferritin and the native protein. Prot Sci 12:1663–1674

    Article  CAS  Google Scholar 

  • Kumsta C, Jakob U (2009) Redox-regulated chaperones. Biochemistry 48:4666–4676

    Article  CAS  PubMed  Google Scholar 

  • Liang P, MacRae TH (1999) The synthesis of a small heat shock/α-crystallin protein in Artemia and its relationship to stress tolerance during development. Dev Biol 207:445–456

    Article  CAS  PubMed  Google Scholar 

  • MacRae TH (2003) Molecular chaperones, stress resistance and development in Artemia franciscana. Semin Cell Dev Biol 14:251–258

    Article  CAS  PubMed  Google Scholar 

  • MacRae TH (2005) Diapause: diverse states of developmental and metabolic arrest. J Biol Res 3:3–14

    CAS  Google Scholar 

  • MacRae TH (2010) Gene expression, metabolic regulation and stress tolerance during diapause. Cell Mol Life Sci 67:2405–2424

    Article  CAS  PubMed  Google Scholar 

  • Merritt EA, Bacon DJ (1997) Raster3D photorealistic molecular graphics. Meth Enzymol 277:505–524

    Article  CAS  PubMed  Google Scholar 

  • Park SK, Jung YJ, Lee JR, Lee YM, Jang HH, Lee SS, Park JH, Kim SY, Moon JC, Lee SY, Chae HB, Shin MR, Jung JH, Kim MG, Kim WY, Yun D-J, Lee KO, Lee SY (2009) Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. Plant Physiol 150:552–561

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, MacRae TH (2008a) ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem J 411:605–611

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, MacRae TH (2008b) ArHsp22, a developmentally regulated small heat shock protein produced in diapause-destined Artemia embryos, is stress inducible in adults. FEBS J 275:3556–3566

    Article  CAS  PubMed  Google Scholar 

  • Qui Z, Tsoi SCM, MacRae TH (2007) Gene expression in diapause-destined embryos of the crustacean, Artemia franciscana. Mech Dev 124:856–867

    Article  Google Scholar 

  • Rasti B, Shahangian SS, Sajedi RH, Taghdir M, Hasannia S, Ranjbar B (2009) Sequence and structural analysis of artemin based on ferritin: a comparative study. Biochim Biophys Acta 1794:1407–1413

    CAS  PubMed  Google Scholar 

  • Reynolds C, Damerell D, Jones S (2009) ProtorP: a protein–protein interaction analysis server. Bioinformatics 25:413–414

    Article  CAS  PubMed  Google Scholar 

  • Robbins HM, Van Stappen G, Sorgeloos P, Sung YY, MacRae TH, Bossier P (2010) Diapause termination and development of encysted Artemia embryos: roles for nitric oxide and hydrogen peroxide. J Exp Biol 213:1464–1470

    Article  CAS  PubMed  Google Scholar 

  • Šali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  Google Scholar 

  • Sun Y, MacRae TH (2005) Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci 62:2460–2476

    Article  CAS  PubMed  Google Scholar 

  • Tanguay JA, Reyes RC, Clegg JS (2004) Habitat diversity and adaptation to environmental stress in encysted embryos of the crustacean Artemia. J Biosci 29:489–501

    Article  PubMed  Google Scholar 

  • Theil EC, Matzapetakis M (2006) Ferritins: iron/oxygen biominerals in protein nanocages. J Biol Inorg Chem 11:803–810

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Van Breukelen F, Maier R, Hand SC (2000) Depression of nuclear transcription and extension of mRNA half-life under anoxia in Artemia franciscana embryos. J Exp Biol 203:1123–1130

    PubMed  Google Scholar 

  • Van Der Linden A, Blust R, Van Laere AJ, DeCleir W (1988) Light-induced release of Artemia dried embryos from diapause: analysis of metabolic status. J Exp Zool 247:131–138

    Article  Google Scholar 

  • Viner RI, Clegg JS (2001) Influence of trehalose on the molecular chaperone activity of p26, a small heat shock/α-crystallin protein. Cell Stress Chaperones 6:126–135

    Article  CAS  PubMed  Google Scholar 

  • Warner AH, Brunet RT, MacRae TH, Clegg JS (2004) Artemin is an RNA-binding protein with high thermal stability and potential RNA chaperone activity. Arch Biochem Biophys 424:189–200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to THM. Dr. Tao Chen generated mutations ArtC22A and ArtC61A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. MacRae.

Additional information

Yan Hu and Svetla Bojikova-Fournier contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Bojikova-Fournier, S., King, A.M. et al. The structural stability and chaperone activity of artemin, a ferritin homologue from diapause-destined Artemia embryos, depend on different cysteine residues. Cell Stress and Chaperones 16, 133–141 (2011). https://doi.org/10.1007/s12192-010-0225-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-010-0225-7

Keywords

Navigation