Skip to main content
Log in

Heat shock protein 70 is upregulated in the intestine of intrauterine growth retardation piglets

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The objective of this study is to investigate the expression and distribution of heat shock protein 70 (Hsp70) in the intestine of intrauterine growth retardation (IUGR) piglets. Samples from the duodenum, prejejunum, distal jejunum, ileum, and colon of IUGR and normal-body-weight (NBW) piglets were collected at birth. The results indicated that the body and intestine weight of IUGR piglets were significantly lower than NBW piglets. The villus height and villus/crypt ratio in jejunum and ileum of IUGR piglets were significantly reduced compared to NBW piglets. These results indicated that IUGR causes abnormal gastrointestinal morphologies and gastrointestinal dysfunction. The mRNA of hsp70 was increased in prejejunum (P < 0.05), distal jejunum (P < 0.05), and colon in IUGR piglets. However, the hsp70 mRNA in ileum of piglets with IUGR was decreased. Similar to hsp70 mRNA, the protein levels of Hsp70 in prejejunum (P < 0.05), distal jejunum, and colon (P < 0.05) in IUGR piglets were higher than those in NBW piglets. These results indicated that the expression of Hsp70 in the intestinal piglets was upregulated by IUGR, and different intestinal sites had different responses to stress. Meanwhile, the localization of Hsp70 in the epithelial cells of the whole villi and intestinal gland rather than in the lamina propria and myenteron suggested that Hsp70 has a cytoprotective role in epithelial cell function and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IUGR:

Intrauterine growth retardation

Hsp:

Heat shock protein

NBW:

Normal body weight

NRC:

National Research Council

SD:

Standard deviation

OD:

Optical density

HSF:

Heat shock factor

References

  • Ahmad RH, Craig CC, Arlan R (1995) Expression of heat shock genes in hepatocytes is affected by age and food restriction in rats. J Nutri 125:410–418

    Google Scholar 

  • Anckar J, Sistonen L (2007) Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv Exp Med Biol 594:78–88

    Article  PubMed  Google Scholar 

  • Arispe N, Doh M, Maio AD (2002) Lipid interaction differentiates the constitutive and stress induced heat shock proteins Hsc70 and Hsp70. Cell Stress Chaperones 7(4):330–338

    Article  CAS  PubMed  Google Scholar 

  • Arvans DL, Vavricka SR, Ren HY et al (2005) Luminal bacterial flora determines physiological expression of intestinal epithelial cytoprotective heat shock proteins 25 and 72. Am J Physiol Gastrointest Liver Physiol 288:G696–G704

    Article  CAS  PubMed  Google Scholar 

  • Bao ED, Sultan KR, Nowak B, Hartung J (2008) Localization of heat shock proteins and histopathological changes in the kidneys of transported pigs. Livest Sci 118(3):231–237

    Article  Google Scholar 

  • Baserga M, Bertolottob C, Maclennanc NK et al (2004) Uteroplacental insufficiency decreases small intestine growth and alters apoptotic homeostasis in term intrauterine growth retarded rats. Early Hum Dev 79:93–105

    Article  PubMed  Google Scholar 

  • Bruce JL, Price BD, Coleman CN, Calderwood SK (1993) Oxidative injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins. Cancer Res 53:12–15

    CAS  PubMed  Google Scholar 

  • Da SP, Aitken RP, Rhind SM, Racey PA, Wallace JM (2001) Influence of placental mediated foetal growth restriction on the onset of puberty in male and female lambs. Reproduction 122:375–383

    Article  Google Scholar 

  • Daugaard M, Rohde M, Jäättelä M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710

    Article  CAS  PubMed  Google Scholar 

  • David JC, Grognet JF, Lalles JP (2002) Weaning affects the expression of heat shock proteins in different regions of the gastrointestinal tract of piglets. J Nutrition 132:2551–2561

    CAS  Google Scholar 

  • Fowden AL, Giussani DA, Forhead AJ (2005) Endocrine and metabolic programming during intrauterine development. Early Hum Dev 81:723–734

    Article  CAS  PubMed  Google Scholar 

  • Gasbarrini A, Esposti SD, Di CC, Di NS, Loffredo S, Abraham A, Simoncini M, Pola R, Colantoni A, Trevisani F, Bernardi M, Gasbarrini G (1998) Effect of ischemia–reperfusion on heat shock protein 70 and 90 gene expression in rat liver: relation to nutritional status. Dig Dis Sci 43:2601–2605

    Article  CAS  PubMed  Google Scholar 

  • Giussani DA, Forhead AJ, Gardner DS, Fletcher AJ, Allen WR, Fowden AL (2003) Postnatal cardiovascular function after manipulation of fetal growth by embryo transfer in the horse. J Physiol 547:67–76

    Article  CAS  PubMed  Google Scholar 

  • Goloubinoff P, De Los Rios P (2007) The mechanism of Hsp70 chaperones (entropic) pulling the models together. Trends Biochem Sci 32(8):372–380

    Article  CAS  PubMed  Google Scholar 

  • Gower VC, Thompson AM (1997) Location of inducible heat shock protein mRNA in the guinea pig cochlea with a nonradioactive in situ hybridization technique. Laryngoscope 107(2):228–232

    Article  CAS  PubMed  Google Scholar 

  • Jones B, Gores GJ (1997) Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine. Am J Physiol 273:G1174–G1188

    CAS  PubMed  Google Scholar 

  • Kabakov AE, Gabai VL (1997) Heat shock proteins and cytoprotection: ATP-deprived mammalian cells. RG Landes, Austin

    Google Scholar 

  • Khassaf M, Child RB, McArdle A, Brodie D, Esanu C, Jackson MJ (2001) Time course of responses of human skeletal muscle to oxidative stress induced by nondamaging exercise. J Appl Physiol 90:1031–1035

    CAS  PubMed  Google Scholar 

  • Kojima M, Hoshimaru M, Aoki T, Takahashi JB, Ohtsuka T, Asahi M, Matsuura N, Kikuchi H (1996) Expression of heat shock proteins in the developing rat retina. Neurosci Lett 205:215–217

    Article  CAS  PubMed  Google Scholar 

  • Liu YX, Li NN, You L (2008) Hsp70 is associated with endothelial activation in placental vascular diseases. Mol Med 14(9–10):561–566

    CAS  PubMed  Google Scholar 

  • Mao L, Shelden EA (2006) Developmentally regulated gene expression of the small heat shock protein Hsp27 in zebrafish embryos. Gene Expr Patterns 6:127–133

    Article  CAS  PubMed  Google Scholar 

  • Marshman E, Ottewell PD, Potten CS, Watson AJ (2001) Caspase activation during spontaneous and radiation induced apoptosis in the murine intestine. J Pathol 195:285–292

    Article  CAS  PubMed  Google Scholar 

  • Martin J, Masri J, Bernath A, Nishimura RN, Gera J (2008) Hsp70 associates with Rictor and is required for mTORC2 formation and activity. Biochem and Bioph Res Co 372:578–583

    Article  CAS  Google Scholar 

  • McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85:571–633

    Article  CAS  PubMed  Google Scholar 

  • Michael D, Hnat JW, Meadows DE, Brochman et al (2005) Heat shock protein-70 and 4-hydroxy-2-nonenal adducts in human placental villous tissue of normotensive, preeclamptic and intrauterine growth restricted pregnancies. Am J Obster and Gynecol 193:836–840

    Article  Google Scholar 

  • Miller L, Qureshi MA (1992) Molecular changes associated with heat shock treatment in avian mononuclear and lymphoid lineage cells. Poult Sci 71:473–481

    CAS  PubMed  Google Scholar 

  • Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22:427–1438

    Article  Google Scholar 

  • Musch MW, Sugi K, Straus D, Chang EB (1999) Heat-shock protein 72 protects against oxidant-induced injury of barrier function of human colonic epithelial Caco2/bbe cells. Gastroenterology 117:115–122

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (NRC) (1998) Nutrient requirements of swine, 10th edn. National Academy Press, Washington, DC revised

    Google Scholar 

  • Njemini R, Bautmans I, Lambert M, Demanet C, Mets T (2007) Heat shock proteins and chemokine/cytokine secretion profile in ageing and inflammation. Mech Ageing Dev 128:450–454

    Article  CAS  PubMed  Google Scholar 

  • Oyake J, Otaka M, Jin M et al (2006) Overexpression of 70-kDa heat shock protein confers protection against monochloramine-induced gastric mucosal cell injury. Life Sci 79:300–305

    Article  CAS  PubMed  Google Scholar 

  • Pierzchalski P, Krawiec A, Ptak-Belowska A, Baranska A, Konturek SJ, Pawlik WW (2006) The mechanism of heat-shock protein 70 gene expression abolition in gastric epithelium caused by Helicobacter pylori infection. Helicobacter 11:96–104

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Musch MW, Kojima K, Boone D, Ma A, Chang EB (2001) Short-chain fatty acids induce intestinal epithelial heat shock protein 25 expression in rats and IEC 18 cells. Gastroenterology 121:631–639

    Article  CAS  PubMed  Google Scholar 

  • Salokhe S, Sarkar A, Kulkarni A, Mukherjee S, Pal JK (2006) Flufenoxuron, an acylurea insect growth regulator, alters development of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) by modulating levels of chitin, soluble protein content, and HSP70 and p34cdc2 in the larval tissues. Pestic Biochem Physiol 85:84–90

    Article  CAS  Google Scholar 

  • San YH, Ming FT, Yu TH et al (2005) Developmental changes of heat shock proteins in porcine testis by a proteomic analysis. Theriogenology 64:1940–1955

    Article  Google Scholar 

  • Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392–1407

    CAS  PubMed  Google Scholar 

  • Schwerin M, Maak S, Kalbe C, Fuerbass R (2001) Functional promoter variants of highly conserved inducible hsp70 genes significantly affect stress response. Biochimica et Biophysica Acta 1522:108–111

    CAS  PubMed  Google Scholar 

  • Selak MA, Storey BT, Peterside I, Simmons R (2003) Impaired oxidative phosphorylation in skeletal muscle of intrauterine growth-retarded rats. Am J Physiol Endocrinol Metab 285:E130–E137

    CAS  PubMed  Google Scholar 

  • Sepponen K, Pösö AR (2006) The inducible form of heat shock protein 70 in the serum, colon and small intestine of the pig: comparison to conventional stress markers. Vet J 171:519–524

    Article  CAS  PubMed  Google Scholar 

  • Shah M, Stanek J, Handwerger S (1998) Differential localization of heat shock proteins 90, 70, 60 and 27 in human decidua and placenta during pregnancy. J Histochem 30:509–518

    Article  CAS  Google Scholar 

  • Simmons RA, Irena SK, Selak MA (2005) Progressive accumulation of mitochondrial DNA mutations and decline in mitochondrial function lead to cell failure β-cell failure. J Biol Chem 28(31):28785–28791

    Article  Google Scholar 

  • Sistonen L, Sarge KD, Phillips B, Abravaya K, Morimoto RI (1992) Activation of heat shock factor 2 during hemin induced differentiation of human erythroleukemia cells. Mol Cell Biol 12:4104–4111

    CAS  PubMed  Google Scholar 

  • Takenaka IM, Hightower LE (1993) Regulation of chicken Hsp70 and Hsp90 family gene expression by transforming growth factor-b1. J Cell Physiol 155:54–62

    Article  CAS  PubMed  Google Scholar 

  • Trahair JF, DeBarro TM, Robinson JS, Owens JA (1997) Restriction of nutrition in utero selectively inhibits gastrointestinal growth in fetal sheep. J Nutr 127:637–641

    CAS  PubMed  Google Scholar 

  • Wada I, Otaka M, Jin M (2006) Expression of HSP72 in the gastric mucosa is regulated by gastric acid in rats—correlation of HSP72 expression with mucosal protection. Biochem Bioph Res Co 349:611–618

    Article  CAS  Google Scholar 

  • Wang T, Huo YJ, Shi FX, Xu RJ, Hutz RJ (2005) Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs. Biol Neonate 88:66–72

    Article  PubMed  Google Scholar 

  • Wang JJ, Chen LX, Li DF et al (2008) Intrauterine growth restriction affects the proteomes of the small intestine, liver and skeletal muscle in newborn pigs. J Nutr 138:60–66

    CAS  PubMed  Google Scholar 

  • Wataba K, Saito T, Takeuchi M et al (2004) Changed expression heat shock proteins in various pathological findings in placentas with intrauterine fetal growth restriction. Med Electron Microsc 37:170–176

    Article  CAS  PubMed  Google Scholar 

  • Watanabe D, Otaka M, Mikami K et al (2004) Expression of a 72-kDa heat shock protein, and its protective function, in gastric mucosa in cirrhotic rats. J Gastroenterol 39:724–733

    Article  CAS  PubMed  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    CAS  PubMed  Google Scholar 

  • Wu GY, Bazer FW, Wallace JM, Spencer TE (2006) Board-invited review: intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Article  CAS  PubMed  Google Scholar 

  • Xu RJ, Mellor DJ, Tungthanathanich P, Birtles MJ, Reynolds GW, Simpson HV (1992) Growth and morphological changes in the small and the large intestine in piglets during the first three days after birth. J Dev Physiol 18:161–172

    CAS  PubMed  Google Scholar 

  • Yu JM, Bao ED, Yan JY, Lei L (2008) Expression and localization of Hsps in the heart and blood vessel of heat-stressed broilers. Cell Stress Chaperones 13:327–335

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Bao ED, Zhao RQ et al (2009) Expression of heat shock protein 60 in the tissues of transported piglets. Cell Stress Chaperones 14:61–69

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (30771569). We would like to thank Yuanxiao Wang and Jianjun Wang for their assistance regarding sample collection. We also thank Caiyong Chen for critical discussions and reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, X., Wang, T., Zhang, X. et al. Heat shock protein 70 is upregulated in the intestine of intrauterine growth retardation piglets. Cell Stress and Chaperones 15, 335–342 (2010). https://doi.org/10.1007/s12192-009-0148-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0148-3

Keywords

Navigation