Skip to main content
Log in

Transcription of the Neurospora crassa 70-kDa class heat shock protein genes is modulated in response to extracellular pH changes

  • Short Communication
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Heat shock proteins belong to a conserved superfamily of molecular chaperones found in prokaryotes and eukaryotes. These proteins are linked to a myriad of physiological functions. In this study, we show that the N. crassa hsp70-1 (NCU09602.3) and hsp70-2 (NCU08693.3) genes are preferentially expressed in an acidic milieu after 15 h of cell growth in sufficient phosphate at 30°C. No significant accumulation of these transcripts was detected at alkaline pH values. Both genes accumulated to a high level in mycelia that were incubated for 1 h at 45°C, regardless of the phosphate concentration and extracellular pH changes. Transcription of the hsp70-1 and hsp70-2 genes was dependent on the pacC + background in mycelia cultured under optimal growth conditions or at 45°C. The pacC gene encodes a Zn-finger transcription factor that is involved in the regulation of gene expression by pH. Heat shock induction of these two hsp genes in mycelia incubated in low-phosphate medium was almost not altered in the nuc-1 background under both acidic and alkaline pH conditions. The NUC-1 transcriptional regulator is involved in the derepression of nucleases, phosphatases, and transporters that are necessary for fulfilling the cell's phosphate requirements. Transcription of the hsp70-3 (NCU01499.3) gene followed a different pattern of induction—the gene was depressed under insufficient phosphate conditions but was apparently unaffected by alkalinization of the culture medium. Moreover, this gene was not induced by heat shock. These results reveal novel aspects of the heat-sensing network of N. crassa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Britton ME, Kapoor M (2002) The oligomeric state, complex formation, and chaperoning activity of hsp70 and hsp80 of Neurospora crassa. Biochem Cell Biol 80:797–809

    Article  PubMed  Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451

    Article  PubMed  Google Scholar 

  • Caddick MX, Brownlee AG, Arst HN (1986) Regulation of gene-expression by pH of the growth-medium in Aspergillus nidulans. Mol Gen Genet 203:346–353

    Article  PubMed  Google Scholar 

  • Christis C, Lubsen NH, Braakman I (2008) Protein folding includes oligomerization—examples from the endoplasmic reticulum and cytosol. FEBS J 275:4700–4727

    Article  PubMed  Google Scholar 

  • Craig EA, Kramer J, Shilling J, Werner-Washburne M, Holmes S, Kosic-Smithers J, Nicolet CM (1989) SSC1, an essential member of the yeast HSP70 multigene family, encodes a mitochondrial protein. Mol Cell Biol 9:3000–3008

    PubMed  Google Scholar 

  • Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710

    Article  PubMed  Google Scholar 

  • Deocaris CC, Kaul SC, Wadhwa R (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 11:116–128

    Article  PubMed  Google Scholar 

  • Ellis RJ (2006) Molecular chaperones: assisting assembly in addition to folding. Trends Biochem Sci 31:395–401

    Article  PubMed  Google Scholar 

  • Ellwood MS, Craig EA (1984) Differential regulation of the 70 K heat shock gene and related genes in Saccharomyces cerevisiae. Mol Cell Biol 4:1454–1459

    PubMed  Google Scholar 

  • Faircloth LM, Churchill PF, Caldwell GA, Caldwell KA (2009) The microtubule-associated protein, NUD-1, exhibits chaperone activity in vitro. Cell Stress Chaperones 14:95–103

    Article  PubMed  Google Scholar 

  • Fox GC, Shafiq M, Briggs DC, Knowles PP, Collister M et al (2007) Redox-mediated substrate recognition by Sdp1 defines a new group of tyrosine phosphatases. Nature 447:487–492

    Article  PubMed  Google Scholar 

  • Freitag DG, Ouimet PM, Girvitz TL, Kapoor M (1997) Heat shock protein 80 of Neurospora crassa, a cytosolic molecular chaperone of the eukaryotic stress 90 family, interacts directly with heat shock protein 70. Biochemistry 36:10221–10229

    Article  PubMed  Google Scholar 

  • Freitas JS, Silva EM, Rossi A (2007) Identification of nutrient-dependent changes in extracellular pH and acid phosphatase secretion in Aspergillus nidulans. Genet Mol Res 6:721–729

    PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  PubMed  Google Scholar 

  • Georg RC, Gomes SL (2007) Comparative expression analysis of members of the Hsp70 family in the chytridiomycete Blastocladiella emersonii. Gene 386:24–34

    Article  Google Scholar 

  • Gras DE, Silveira HCS, Martinez-Rossi NM, Rossi A (2007) Identification of genes displaying differential expression in the nuc-2 mutant strain of the mold Neurospora crassa grown under phosphate starvation. FEMS Microbiol Lett 269:196–200

    Article  PubMed  Google Scholar 

  • Gras DE, Silveira HCS, Peres NTA, Sanches PR, Martinez-Rossi NM, Rossi A (2009) Transcriptional changes in the nuc-2A mutant strain of Neurospora crassa cultivated under conditions of phosphate shortage. Microbiol Res . doi:10.1016/j.micres.2008.1012.1005

    PubMed  Google Scholar 

  • Hahn JS, Neef DW, Thiele DJ (2006) A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Mol Microbiol 60:240–251

    Article  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  PubMed  Google Scholar 

  • Hashikawa N, Yamamoto N, Sakurai H (2007) Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements. J Biol Chem 282:10333–10340

    Article  PubMed  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  PubMed  Google Scholar 

  • Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61(4):310–318. doi:10.1016/j.addr.2009.1002.1003

    Article  PubMed  Google Scholar 

  • Kang S (1993) Functional domains of the transcriptional activator NUC-1 in Neurospora crassa. Gene 130:259–264

    Article  PubMed  Google Scholar 

  • Kang S, Metzenberg RL (1990) Molecular analysis of nuc-1 +, a gene controlling phosphorus acquisition in Neurospora crassa. Mol Cell Biol 10:5839–5848

    PubMed  Google Scholar 

  • Kapoor M, Curle CA, Runham C (1995) The Hsp70 gene family of Neurospora crassa—cloning, sequence-analysis, expression, and genetic-mapping of the major stress-inducible member. J Bacteriol 177:212–221

    PubMed  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    PubMed  Google Scholar 

  • Lamb TM, Mitchell AP (2003) The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23:677–686

    Article  PubMed  Google Scholar 

  • Leal J, Squina FM, Martinez-Rossi NM, Rossi A (2007) The transcription of the gene for iso-orotate decarboxylase (IDCase), an enzyme of the thymidine salvage pathway, is downregulated in the preg c mutant strain of Neurospora crassa grown under phosphate starvation. Can J Microbiol 53:1011–1015

    Article  PubMed  Google Scholar 

  • Leal J, Squina FM, Freitas JS, Silva EM, Ono CJ, Martinez-Rossi NM, Rossi A (2009) A splice variant of the Neurospora crassa hex-1 transcript, which encodes the major protein of the Woronin body, is modulated by extracellular phosphate and pH changes. FEBS Lett 583:180–184

    Article  PubMed  Google Scholar 

  • Li F, Luan W, Zhang C, Zhang J, Wang B, Xie Y, Li S, Xiang J (2009) Cloning of cytoplasmic heat shock protein 90 (FcHSP90) from Fenneropenaeus chinensis and its expression response to heat shock and hypoxia. Cell Stress Chaperones 14:161–172

    Article  PubMed  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  PubMed  Google Scholar 

  • McCluskey K (2003) The Fungal Genetics Stock Center: from molds to molecules. Adv Appl Microbiol 52:245–262

    Article  PubMed  Google Scholar 

  • Metzenberg RL (1979) Implications of some genetic control mechanisms in Neurospora. Microbiol Rev 43:361–383

    PubMed  Google Scholar 

  • Montero-Barrientos M, Hermosa R, Nicolas C, Cardoza RE, Gutierrez S, Monte E (2008) Overexpression of a Trichoderma HSP70 gene increases fungal resistance to heat and other abiotic stresses. Fungal Genet Biol 45:1506–1513

    Article  PubMed  Google Scholar 

  • Nahas E, Terenzi HF, Rossi A (1982) Effect of carbon source and pH on the production and secretion of acid-phosphatase (EC3.1.3.2) and alkaline-phosphatase (EC3.1.3.1) in Neurospora crassa. J Gen Microbiol 128:2017–2021

    Google Scholar 

  • Nicchitta CV (2009) Cell biology: how to combat stress. Nature 457:668–669

    Article  PubMed  Google Scholar 

  • Nozawa SR, Ferreira-Nozawa MS, Martinez-Rossi NM, Rossi A (2003a) The pH-induced glycosylation of secreted phosphatases is mediated in Aspergillus nidulans by the regulatory gene pacC-dependent pathway. Fungal Genet Biol 39:286–295

    Article  Google Scholar 

  • Nozawa SR, May GS, Martinez-Rossi NM, Ferreira-Nozawa MS, Coutinho-Netto J, Maccheroni W Jr, Rossi A (2003b) Mutation in a calpain-like protease affects the posttranslational mannosylation of phosphatases in Aspergillus nidulans. Fungal Genet Biol 38:220–227

    Article  Google Scholar 

  • Ogawa N, DeRisi J, Brown PO (2000) New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11:4309–4321

    PubMed  Google Scholar 

  • Peleg Y, Addison R, Aramayo R, Metzenberg RL (1996a) Translocation of Neurospora crassa transcription factor NUC-1 into the nucleus is induced by phosphorus limitation. Fungal Genet Biol 20:185–191

    Article  Google Scholar 

  • Peleg Y, Aramayo R, Kang S, Hall JG, Metzenberg RL (1996b) NUC-2, a component of the phosphate-regulated signal transduction pathway in Neurospora crassa, is an ankyrin repeat protein. Mol Gen Genet 252:709–716

    Google Scholar 

  • Peñas MM, Hervas-Aguilar A, Munera-Huertas T, Reoyo E, Penalva MA, Arst HN Jr, Tilburn J (2007) Further characterization of the signaling proteolysis step in the Aspergillus nidulans pH signal transduction pathway. Eukaryot Cell 6:960–970

    Article  PubMed  Google Scholar 

  • Perez-Esteban B, Orejas M, Gomez-Pardo E, Penalva MA (1993) Molecular characterization of a fungal secondary metabolism promoter: transcription of the Aspergillus nidulans isopenicillin N synthetase gene is modulated by upstream negative elements. Mol Microbiol 9:881–895

    Article  PubMed  Google Scholar 

  • Plesofsky NS, Levery SB, Castle SA, Brambl R (2008) Stress-induced cell death is mediated by ceramide synthesis in Neurospora crassa. Eukaryot Cell 7:2147–2159

    Article  PubMed  Google Scholar 

  • Ramon AM, Fonzi WA (2003) Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC. Eukaryot Cell 2:718–728

    Article  PubMed  Google Scholar 

  • Rensing L, Monnerjahn C, Meyer U (1998) Differential stress gene expression during the development of Neurospora crassa and other fungi. FEMS Microbiol Lett 168:159–166

    Article  PubMed  Google Scholar 

  • Rezaie S, Ban J, Mildner M, Poitschek C, Brna C, Tschachler E (2000) Characterization of a cDNA clone, encoding a 70 kDa heat shock protein from the dermatophyte pathogen Trichophyton rubrum. Gene 241:27–33

    Article  PubMed  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  Google Scholar 

  • Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1:97–98

    Article  PubMed  Google Scholar 

  • Rodrigues SA, Rossi A (1985) Effect of phosphate levels on the synthesis of acid phosphatases (EC 3.1.3.2) in Neurospora crassa. Genet Res 45:239–249

    Article  PubMed  Google Scholar 

  • Sakurai H, Takemori Y (2007) Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1. J Biol Chem 282:13334–13341

    Article  PubMed  Google Scholar 

  • Selker EU, Garrett PW (1988) DNA-Sequence Duplications Trigger Gene Inactivation in Neurospora crassa. Proc Natl Acad Sci U S A 85:6870–6874

    Article  PubMed  Google Scholar 

  • Silva EM, Freitas JS, Gras DE, Squina FM, Leal J, Silveira HCS, Martinez-Rossi NM, Rossi A (2008) Identification of genes differentially expressed in a strain of the mold Aspergillus nidulans carrying a loss-of-function mutation in the palA gene. Can J Microbiol 54:803–811

    Article  PubMed  Google Scholar 

  • Steel GJ, Fullerton DM, Tyson JR, Stirling CJ (2004) Coordinated activation of Hsp70 chaperones. Science 303:98–101

    Article  PubMed  Google Scholar 

  • Thompson S, Croft NJ, Sotiriou A, Piggins HD, Crosthwaite SK (2008) Neurospora crassa heat shock factor 1 is an essential gene; a second heat shock factor-like gene, hsf2, is required for asexual spore formation. Eukaryot Cell 7:1573–1581

    Article  PubMed  Google Scholar 

  • Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Peñalva MA, Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–790

    PubMed  Google Scholar 

  • Tokuriki N, Tawfik DS (2009) Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459:668–673

    Article  PubMed  Google Scholar 

  • Tremmel D, Duarte M, Videira A, Tropschug M (2007) FKBP22 is part of chaperone/folding catalyst complexes in the endoplasmic reticulum of Neurospora crassa. FEBS Lett 581:2036–2040

    Article  PubMed  Google Scholar 

  • Turkel S, Turgut T, Kayakent N (2006) Effect of osmotic stress on the derepression of invertase synthesis in nonconventional yeasts. Lett Appl Microbiol 42:78–82

    Article  PubMed  Google Scholar 

  • Ungermann C, Neupert W, Cyr DM (1994) The role of Hsp70 in conferring unidirectionality on protein translocation into mitochondria. Science 266:1250–1253

    Article  PubMed  Google Scholar 

  • Werner-Washburne M, Becker J, Kosic-Smithers J, Craig EA (1989) Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J Bacteriol 171:2680–2688

    PubMed  Google Scholar 

  • Xavier IJ, Khachatourians GG, Ovsenek N (1999) Constitutive and heat-inducible heat shock element binding activities of heat shock factor in a group of filamentous fungi. Cell Stress Chaperones 4:211–222

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Brazilian funding agencies FAPESP, CNPq, CAPES, and FAEPA. We thank Mendel Mazucato and Carlos A. Vieira for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Squina, F.M., Leal, J., Cipriano, V.T.F. et al. Transcription of the Neurospora crassa 70-kDa class heat shock protein genes is modulated in response to extracellular pH changes. Cell Stress and Chaperones 15, 225–231 (2010). https://doi.org/10.1007/s12192-009-0131-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0131-z

Keywords

Navigation