Skip to main content
Log in

Substitution of only two residues of human Hsp90α causes impeded dimerization of Hsp90β

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Two isoforms of the 90-kDa heat-shock protein (Hsp90), i.e., Hsp90α and Hsp90β, are expressed in the cytosol of mammalian cells. Although Hsp90 predominantly exists as a dimer, the dimer-forming potential of the β isoform of human and mouse Hsp90 is less than that of the α isoform. The 16 amino acid substitutions located in the 561–685 amino acid region of the C-terminal dimerization domain should be responsible for this impeded dimerization of Hsp90β (Nemoto T, Ohara-Nemoto Y, Ota M, Takagi T, Yokoyama K. Eur J Biochem 233: 1–8, 1995). The present study was performed to define the amino acid substitutions that cause the impeded dimerization of Hsp90β. Bacterial two-hybrid analysis revealed that among the 16 amino acids, the conversion from Ala558 of Hsp90β to Thr566 of Hsp90α and that from Met621 of Hsp90β to Ala629 of Hsp90α most efficiently reversed the dimeric interaction, and that the inverse changes from those of Hsp90α to Hsp90β primarily explained the impeded dimerization of Hsp90β We conclude that taken together, the conversion of Thr566 and Ala629 of Hsp90α to Ala558 and Met621 is primarily responsible for impeded dimerization of Hsp90β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Hsp:

heat-shock protein

Hsp90:

90-kDa heat shock protein

hHsp90:

human Hsp90

hHsp90α and hHsp90β:

α and β isoforms, respectively, of hHsp90

Grp94:

94-kDa glucose-regulated protein/endoplasmic reticulum paralog of Hsp90

Trap1:

Trap1/mitochondrial paralog of Hsp90

HtpG:

bacterial ortholog of eukaryotic Hsp90

PAGE:

polyacrylamide gel electrophoresis

SDS:

sodium dodecyl sulfate

References

  • Bardwell JC, Craig EA (1987) Eukaryotic M r 83,000 heat shock protein has a homologue in Escherichia coli. Proc Natl Acad Sc. U S A 84:5177–5181

    Article  CAS  Google Scholar 

  • Borkovich KA, Farrelly FW, Finkelstein DB, Taulien J, Lindquist S (1989) Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol 9:3919–3930

    PubMed  CAS  Google Scholar 

  • Farrelly FW, Finkelstein DB (1984) Complete sequence of the heat shock-inducible HSP90 gene of Saccharomyces cerevisiae. J Biol Chem 259:5745–5751

    PubMed  CAS  Google Scholar 

  • Felts SJ, Owen BAL, Nguyen P-M, Trepe J, Donner DT, Toft DO (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275:3305–3333

    Article  PubMed  CAS  Google Scholar 

  • Harris SF, Shiau AK, Agard DA (2004) The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12:1087–1097

    Article  PubMed  CAS  Google Scholar 

  • Hickey E, Brandon SE, Smale G, Lloyd D, Weber LA (1989) Sequence and regulation of a gene encoding a human 89-kDa heat-shock protein. Mol Cell Biol 9:2615–2626

    PubMed  CAS  Google Scholar 

  • Imai Y, Matsushima Y, Sugimura T, Terada M (1991) A simple and rapid method for generating a deletion by PCR. Nucleic Acids Res 19:2785

    Article  PubMed  CAS  Google Scholar 

  • Karimova G, Ullmann A, Ladant D (2001) Protein–protein interactions between Bacillus stearothernophilus tyrosyl-tRNA-synthase subdomains revealed by a bacterial two-hybrid system. J Mol Microbiol Biotechnol 3:73–82

    PubMed  CAS  Google Scholar 

  • Kawano T, Kobayakawa T, Fukuma Y et al (2004) A comprehensive study on the immunological reactivity of Hsp90 molecular chaperone. J Biochem 136:711–722

    Article  PubMed  CAS  Google Scholar 

  • MacLean MJ, Martinez M, Bot N, Picard D (2006) A yeast-based assay revealed a functional defect of the Q488H polymorphism in human Hsp90α. Biochem Biophys Res Commun 337:133–137

    Article  Google Scholar 

  • Mendel DB, Orti E (1988) Isoform composition and stoichiometry of the approximately 90-kDa heat shock protein associated with glucocorticoid receptors. J Biol Chem 263:6695–6702

    PubMed  CAS  Google Scholar 

  • Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B, Piper PW, Pearl LH (2003) Structural and functional analysis of the middle segment of Hsp90: implications for ATP hydrolysis and client–protein and co-chaperone interactions. Mol Cell 11:647–658

    Article  PubMed  CAS  Google Scholar 

  • Minami Y, Kawasaki H, Miyata Y, Suzuki K, Yahara I (1991) Analysis of native forms and their isoform compositions of the mouse 90-kDa heat-shock protein, HSP90. J Biol Chem 266:10099–10103

    PubMed  CAS  Google Scholar 

  • Minami Y, Kimura Y, Kawasaki H, Suzuki K, Yahara I (1994) The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo. Mol Cell Biol 14:1459–1464

    PubMed  CAS  Google Scholar 

  • Moore SK, Kozak C, Robinson EA, Ullrich SJ, Appella E (1989) Murine 86- and 84-kDa heat shock proteins, cDNA sequences, chromosome assignments, and evolutionary origins. J Biol Chem 264:5343–5351

    PubMed  CAS  Google Scholar 

  • Nemoto T, Ohara-Nemoto Y, Ota M, Takagi T, Yokoyama K (1995) Mechanism of dimer formation of the 90-kDa heat-shock protein. Eur J Biochem 233:1–8

    Article  PubMed  CAS  Google Scholar 

  • Nemoto T, Matsusaka T, Ota M, Takagi T, Collinge DB, Walther-Larsen H (1996) Dimerization characteristics of the 94-kDa glucose-regulated protein. J Biochem 120:249–256

    PubMed  CAS  Google Scholar 

  • Nemoto T, Sato N, Iwanari H, Yamashita H, Takagi T (1997) Domain structures and immunogenic regions of the 90-kDa heat-shock protein (HSP90): probing with a library of anti-HSP90 monoclonal antibodies and limited proteolysis. J Biol Chem 272:26179–26187

    Article  PubMed  CAS  Google Scholar 

  • Nemoto TK, Ono T, Kobayakawa T, Tanaka E, Baba TT, Tanaka K, Takagi T, Gotoh T (2001) Domain–domain interactions of HtpG, an Escherichia coli homologue of eukaryotic HSP90 molecular chaperone. Eur J Biochem 268:5258–5269

    Article  PubMed  CAS  Google Scholar 

  • Passarino G, Cavalleri GL, Stecconi R, Franceschi C, Altomare K, Dato S, Greco V, Sforza LLC, Underhill PA, Benedictis G (2003) Molecular variation of human HSP90α and HSP90β genes in Caucasians. Hum Mutat 21:554–555

    Article  PubMed  Google Scholar 

  • Pelham HRB (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46:959–961

    Article  PubMed  CAS  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    Article  PubMed  CAS  Google Scholar 

  • Rebbe NF, Ware J, Bertina RM, Modrich P, Sttafford DW (1987) Nucleotide sequence of a cDNA for a member of the human 90-kDa heat-shock protein family. Gene 53:235–245

    Article  PubMed  CAS  Google Scholar 

  • Roi R (1998) Structures and expression of HSP90 family proteins. Jpn J Oral Biol 40:528–541 (in Japanese)

    CAS  Google Scholar 

  • Schmitz G, Schmidt M, Feierabend J (1996) Characterization of a plastid-specific HSP90 homologue: identification of a cDNA sequence, phylogenetic descendence and analysis of its mRNA and protein expression. Plant Mol Biol 30:479–492

    Article  PubMed  CAS  Google Scholar 

  • Shiau AK, Harris SF, Southworth DR, Agard DA (2006) Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127:329–340

    Article  PubMed  CAS  Google Scholar 

  • Song HY, Dunbar JD, Zhang YX, Guo D, Toft DO (1996) Identification of a protein with homology to hsp90 that binds to type 1 tumor necrosis factor receptor. J Biol Chem 270:3574–3581

    Google Scholar 

  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250

    Article  PubMed  CAS  Google Scholar 

  • Tanaka E, Nemoto TK, Ono T (2001) Liberation of the intra-molecular interaction as the mechanism of heat-induced activation of HSP90 molecular chaperone. Eur J Biochem 268:5270–5277

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ, Feramisco JR (1982) Purification of the major mammalian heat shock proteins. J Biol Chem 257:14949–14959

    PubMed  CAS  Google Scholar 

  • Yamada S, Ono T, Mizuno A, Nemoto TK (2003) A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone. Eur J Biochem 270:146–154

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate Dr. T. Ono for the technical assistance. This work was supported by a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (to T. K.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki K. Nemoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayakawa, T., Yamada, Si., Mizuno, A. et al. Substitution of only two residues of human Hsp90α causes impeded dimerization of Hsp90β. Cell Stress and Chaperones 13, 97–104 (2008). https://doi.org/10.1007/s12192-008-0017-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0017-5

Keywords

Navigation