Skip to main content
Log in

An effective computational solver for fractal-fractional 2D integro-differential equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop a computational approach for fractal-fractional integro-differential equations (FFIDEs) in Atangana–Riemann–Liouville sense. This plan focuses on the Chelyshkov polynomials (ChPs) and the utilization of the Legendre–Gauss quadrature rule. The operational matrices (OMs) of integration, integer-order derivative and fractal-fractional-order derivative are calculated. These matrices in comparison to OMs existing in other methods are more accurate. The method consists of approximating the exiting functions in terms of basis functions. Using the provided OMs alongside the Legendre collocation points, the original problem is converted into a set of nonlinear algebraic equations containing unknown parameters. An error analysis is presented to demonstrate the convergence order of the approach. We demonstrate the effectiveness and reliability of the proposed technique by solving numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Abro, K.A., Atangana, A.: Mathematical analysis of memristor through fractal-fractional differential operators: a numerical study. Math. Methods Appl. Sci. 43(10), 6378–6395 (2020)

    Article  MathSciNet  Google Scholar 

  2. Abro, K.A., Atangana, A.: A comparative study of convective fluid motion in rotating cavity via Atangana–Baleanu and Caputo–Fabrizio fractal-fractional differentiations. Eur. Phys. J. Plus 135(2), 1–16 (2020)

    Article  Google Scholar 

  3. Atangana, A., Khan, M.A.: Modeling and analysis of competition model of bank data with fractal-fractional Caputo-Fabrizio operator. Alex. Eng. J. 59(4), 1985–1998 (2020)

    Article  Google Scholar 

  4. Wang, W., Khan, M.A.: Analysis and numerical simulation of fractional model of bank data with fractal-fractional Atangana-Baleanu derivative. J. Comput. Appl. Math. 369, 112646 (2020)

    Article  MathSciNet  Google Scholar 

  5. Srivastava, H.M., Saad, K.M.: Numerical simulation of the fractal-fractional Ebola virus. Fractal Fract 4(4), 1–13 (2020)

    Article  Google Scholar 

  6. Atangana, A., Qureshi, S.: Modeling attractors of chaotic dynamical systems with fractal-fractional operators. Chaos Solitons Fractals 123, 320–337 (2019)

    Article  MathSciNet  Google Scholar 

  7. Abro, K.A., Atangana, A.: Numerical and mathematical analysis of induction motor by means of AB-fractal-fractional differentiation actuated by drilling system. Numerical Methods for Partial Differential Equations 38(3), 293–307 (2022)

    MathSciNet  Google Scholar 

  8. Ahmad, I., Ahmad, N., Shah, K., Abdeljawad, T.: Some appropriate results for the existence theory and numerical solutions of fractals-fractional order malaria disease mathematical model. Results Control Optim. 14, 100386 (2024)

    Article  Google Scholar 

  9. Shah, K., Abdeljawad, T.: On complex fractal-fractional order mathematical modeling of CO 2 emanations from energy sector. Phys. Scr. 99(1), 015226 (2023)

    Article  Google Scholar 

  10. Khan, Z.A., Shah, K., Abdalla, B., Abdeljawad, T.: A numerical study of complex dynamics of a chemostat model under fractal-fractional derivative. Fractals 31(08), 2340181 (2023)

    Article  Google Scholar 

  11. Khan, Z.A., Rahman, M., Shah, K.: Study of a fractal-fractional smoking models with relapse and harmonic mean type incidence rate. J. Funct. Spaces 2021, 1–11 (2021)

    MathSciNet  Google Scholar 

  12. Hosseininia, M., Heydari, M.H., Maalek Ghaini, F.M., Avazzadeh, Z.: A meshless technique based on the moving least squares shape functions for nonlinear fractal-fractional advection-diffusion equation. Engineering Analysis with Boundary Elements 127, 8–17 (2021)

    Article  MathSciNet  Google Scholar 

  13. Hosseininia, M., Heydari, M.H., Avazzadeh, Z.: The numerical treatment of nonlinear fractal-fractional 2D Emden-Fowler equation utilizing 2D Chelyshkov polynomials. Fractals 28(08), 2040042 (2020)

    Article  Google Scholar 

  14. Dehestani, H., Ordokhani, Y.: Developing the discretization method for fractal-fractional two-dimensional Fredholm–Volterra integro-differential equations. Math. Methods Appl. Sci. 44(18), 14256–14273 (2021)

    Article  MathSciNet  Google Scholar 

  15. Dehestani, H., Ordokhani, Y.: An optimum method for fractal-fractional optimal control and variational problems. Int. J. Dyn. Control. pp. 1–13 (2022)

  16. Shah, K., Sarwar, M., Abdeljawad, Shafiullah, T.: Sufficient criteria for the existence of solution to nonlinear fractal-fractional order coupled system with couple integral boundary conditions. J. Appl. Math. Comput. pp. 1–15 (2024)

  17. Shafiullah, K., Shah, M., Sarwar, T.: Abdeljawad, On theoretical and numerical analysis of fractal-fractional non-linear hybrid differential equations. Nonlinear Eng. 13(1), 20220372 (2024)

    Article  Google Scholar 

  18. Heydari, M.H.: Numerical solution of nonlinear 2D optimal control problems generated by Atangana-Riemann-Liouville fractal-fractional derivative. Appl. Numer. Math. 150, 507–518 (2020)

    Article  MathSciNet  Google Scholar 

  19. Heydari, M.H., Atangana, A., Avazzadeh, Z.: Numerical solution of nonlinear fractal-fractional optimal control problems by Legendre polynomials. Math. Methods Appl. Sci. 44(4), 2952–2963 (2021)

    Article  MathSciNet  Google Scholar 

  20. Araz, S.I.: Numerical analysis of a new volterra integro-differential equation involving fractal-fractional operators. Chaos Solitons Fractals 130, 109396 (2020)

    Article  MathSciNet  Google Scholar 

  21. Rahimkhani, P., Ordokhani, Y., Sedaghat, S.: The numerical treatment of fractal-fractional 2D optimal control problems by Müntz-Legendre polynomials. Optim. Control Appl. Methods 44(6), 3033–3051 (2023)

    Article  Google Scholar 

  22. Rahimkhani, P., Heydari, M.H.: Fractional shifted Morgan–Voyce neural networks for solving fractal-fractional pantograph differential equations. Chaos Solitons Fractals 175, 114070 (2023)

    Article  MathSciNet  Google Scholar 

  23. Meleshko, S. V., Grigoriev, Y. N., Ibragimov, N. K., and Kovalev, V. F.: Symmetries of integro-differential equations: with applications in mechanics and plasma physics. Springer Science and Business Media (2010)

  24. Mashayekhi, S., Sedaghat, S.: Fractional model of stem cell population dynamics. Chaos Solitons Fractals 146, 110919 (2021)

    Article  MathSciNet  Google Scholar 

  25. Medlock, J., Kot, M.: Spreading disease: integro-differential equations old and new. Math. Biosci. 184(2), 201–222 (2003)

    Article  MathSciNet  Google Scholar 

  26. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli functions and their applications in solving fractional Fredholem-Volterra integro-differential equations. Appl. Numer. Math. 122, 66–81 (2017)

    Article  MathSciNet  Google Scholar 

  27. Rahimkhani, P., Ordokhani, Y.: Hahn wavelets collocation method combined with Laplace transform method for solving fractional integro-differential equations. Math. Sci. (2023). https://doi.org/10.1007/s40096-023-00514-3

    Article  Google Scholar 

  28. Khader, M.M., Sweilam, N.H.: On the approximate solutions for system of fractional integro-differential equations using Chebyshev pseudo-spectral method. Appl. Math. Model. 37, 9819–9828 (2013)

    Article  MathSciNet  Google Scholar 

  29. Saadatmandi, A., Dehghan, M.: A Legendre collocation method for fractional integro-differential equations. J. Vib. Control 17(13), 2050–2058 (2011)

    Article  MathSciNet  Google Scholar 

  30. Nemati, S., Sedaghat, S., Mohammadi, I.: A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels. J. Comput. Appl. Math. 308, 231–242 (2016)

    Article  MathSciNet  Google Scholar 

  31. Nemati, S., Lima, P.M., Sedaghat, S.: Legendre wavelet collocation method combined with the Gauss Jacobi quadrature for solving fractional delay-type integro-differential equations. Appl. Numer. Math. 149, 99–112 (2020)

    Article  MathSciNet  Google Scholar 

  32. Rahimkhani, P., Ordokhani, Y.: Approximate solution of nonlinear fractional integro-differential equations using fractional alternative Legendre functions. J. Comput. Appl. Math. 365, 112365 (2020)

    Article  MathSciNet  Google Scholar 

  33. Doha, E., Abdelkawy, M., Amin, A., Baleanu, D.: Spectral technique for solving variable-order fractional Volterra integro-differential equations. Numer. Methods Partial Differ. Equ. 34(5), 1659–1677 (2018)

    Article  MathSciNet  Google Scholar 

  34. Chelyshkov, V.S.: Alternative orthogonal polynomials and quadratures. Electron. Trans. Numer. Anal. 25(7), 17–26 (2006)

    MathSciNet  Google Scholar 

  35. Talaei, Y., Asgari, M.: An operational matrix based on Chelyshkov polynomials for solving multi-order fractional differential equations. Neural Comput. Appl. 30(5), 1369–1376 (2018)

    Article  Google Scholar 

  36. Moradi, L., Mohammadi, F., Baleanu, D.: A direct numerical solution of time-delay fractional optimal control problems by using Chelyshkov wavelets. J. Vib. Control 25(2), 310–324 (2019)

    Article  MathSciNet  Google Scholar 

  37. Rahimkhani, P., Ordokhani, Y.: Chelyshkov least squares support vector regression for nonlinear stochastic differential equations by variable fractional Brownian motion. Chaos Solitons Fractals 163, 112570 (2022)

    Article  MathSciNet  Google Scholar 

  38. Rahimkhani, P., Ordokhani, Y., Lima, P.M.: An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets. Appl. Numer. Math. 145, 1–27 (2019)

    Article  MathSciNet  Google Scholar 

  39. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol 204. Elsevier (2006)

  40. Granas, A., Dugundji, J.: Elementary fixed point theorems. In: Fixed Point Theory, Berlin: Springer, pp. 9–84 (2003)

  41. Rahimkhani, P., Ordokhani, Y.: Numerical solution a class of 2D fractional optimal control problems by using 2D Müntz-Legendre wavelets. Optim. Control Appl. Methods 39(6), 1916–1934 (2018)

    Article  Google Scholar 

  42. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    Book  Google Scholar 

  43. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley (1991)

  44. Andrews, G. E., Askey, R., Roy, R.: Special functions. Encyclopedia of Mathematics and its Applications Vol 71. Cambridge University Press (1999)

Download references

Acknowledgements

We express our sincere thanks to the anonymous referees for valuable suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Y. Ordokhani.

Ethics declarations

Conflict of interest

The authors wish to confirm that there are no known Conflict of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimkhani, P., Sedaghat, S. & Ordokhani, Y. An effective computational solver for fractal-fractional 2D integro-differential equations. J. Appl. Math. Comput. (2024). https://doi.org/10.1007/s12190-024-02099-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12190-024-02099-z

Keywords

Mathematics Subject Classification

Navigation