Skip to main content
Log in

Weighted variable based numerical scheme for time-lagged semilinear parabolic problems including small parameter

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A higher-order robust numerical algorithm is proposed for singularly perturbed semilinear parabolic partial differential equations having time lag. After dealing the semilinearity with Newton’s linearization technique, the time derivative is handled with the Crank–Nicolson scheme on a uniform mesh. The spatial derivatives are approached with a monotone hybrid finite difference scheme comprising the central difference scheme and the mid-point upwind scheme with variable weights on a layer-resolving mesh namely, the Shishkin mesh that provides a second-order accurate result upto a logarithmic factor. To overcome the obstacle of order reduction, the entire scheme is again solved on the Bakhvalov–Shishkin mesh. Thomas algorithm is used for computation. The proposed scheme is proved to be advantageous over some existing schemes in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Almatrafi, M.B.: Abundant traveling wave and numerical solutions for Novikov-Veselov system with their stability and accuracy. Appl. Anal. (2022). https://doi.org/10.1080/00036811.2022.2027381

    Article  Google Scholar 

  2. Alharbi, A.R., Almatrafi, M.B.: Exact solitary wave and numerical solutions for geophysical KdV equation. J. King Saud Univ. Sci. 34(6), 102087 (2022). https://doi.org/10.1016/j.jksus.2022.102087

    Article  Google Scholar 

  3. Shams, M., Kausar, N., Agarwal, P., Momani, S., Shah, M.A.: Highly efficient numerical scheme for solving fuzzy system of linear and non-linear equations with application in differential equations. Appl. Math. Sci. Eng. 30(1), 777–810 (2022). https://doi.org/10.1080/27690911.2022.2147165

    Article  MathSciNet  Google Scholar 

  4. Alharbi, A., Almatrafi, M.B.: Exact and numerical solitary wave structures to the variant Boussinesq system. Symmetry 12(9), 1473 (2020). https://doi.org/10.3390/sym12091473

    Article  Google Scholar 

  5. Alharbi, A.R., Almatrafi, M.B.: New exact and numerical solutions with their stability for Ito integro-differential equation via Riccati-Bernoulli sub-ODE method. J. Taibah Univ. Sci. 14(1), 1447–1456 (2020). https://doi.org/10.1080/16583655.2020.1827853

    Article  Google Scholar 

  6. Shakti, D., Mohapatra, J., Das, P., Vigo-Aguiar, J.: A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms. J. Comput. Appl. Math. (2022). https://doi.org/10.1016/j.cam.2020.113167

    Article  MathSciNet  MATH  Google Scholar 

  7. Rajchakit, G., Sriraman, R., Boonsatit, N., Hammachukiattikul, P., Lim, C.P., Agarwal, P.: Exponential stability in the Lagrange sense for Clifford-valued recurrent neural networks with time delays. Adv. Differ. Equ. (2021). https://doi.org/10.1186/s13662-021-03415-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Rihan, F.A.: Computational methods for delay parabolic and time-fractional partial differential equations. Numer. Methods Partial Differ. Equ. 26(6), 1556–1571 (2010). https://doi.org/10.1080/27690911.2022.2147165

    Article  MathSciNet  MATH  Google Scholar 

  9. Das, A., Natesan, S.: Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection-diffusion problems on Shishkin mesh. Appl. Math. Comput. 271, 168–186 (2015). https://doi.org/10.1016/j.amc.2015.08.137

    Article  MathSciNet  MATH  Google Scholar 

  10. Govindarao, L., Mohapatra, J., Das, A.: A fourth-order numerical scheme for singularly perturbed delay parabolic problem arising in population dynamics. J. Appl. Math. Comput. 63(1), 171–195 (2020). https://doi.org/10.1007/s12190-019-01313-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Britton, N.F.: Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model. SIAM J Appl Math. 50(6), 1663–1688 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Keng Chieh Wang, P.: Asymptotic stability of a time-delayed diffusion system. J. Appl. Mech. 30(4), 500–504 (1963)

  13. Govindarao, L., Sahu, S.R., Mohapatra, J.: Uniformly convergent numerical method for singularly perturbed time delay parabolic problem with two small parameters. Iran. J. Sci. Technol. Trans. A Sci. 43, 2373–2383 (2019). https://doi.org/10.1007/s40995-019-00697-2

  14. Priyadarshana, S., Mohapatra, J., Govindrao, L.: An efficient uniformly convergent numerical scheme for singularly perturbed semilinear parabolic problems with large delay in time. J. Appl. Math. Comput. 64, 2617–2639 (2021). https://doi.org/10.1007/s12190-021-01633-7

    Article  MathSciNet  MATH  Google Scholar 

  15. Sahu, S., Mohapatra, J.: Numerical investigation of time delay parabolic differential equation involving two small parameters. Eng. Comput. 38(6), 2882–2899 (2021). https://doi.org/10.1108/EC-07-2020-0369

    Article  Google Scholar 

  16. Kumar, S., Kumar, D., Sharma, J.R., Cesarano, C., Agarwal, P., Chu, Y.: An optimal fourth order derivative-free numerical algorithm for multiple roots. Symmetry 12(6), 1038 (2020). https://doi.org/10.3390/sym12061038

    Article  Google Scholar 

  17. Kumar, S., Kumar, B.R.: A finite element domain decomposition approximation for a semilinear parabolic singularly perturbed differential equation. Int. J. Nonlinear Sci. Numer. 18(1), 41–55 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kabeto, M.J., Duressa, G.F.: Robust numerical method for singularly perturbed semilinear parabolic differential difference equations. Math. Comput. Simul. 188, 537–547 (2021). https://doi.org/10.1007/s12190-021-01633-7

    Article  MathSciNet  MATH  Google Scholar 

  19. Priyadarshana, S., Mohapatra, J., Pattanaik, S.R.: Parameter uniform optimal order numerical approximations for time-delayed parabolic convection diffusion problems involving two small parameters. Comput. Appl. Math. (2022). https://doi.org/10.1007/s40314-022-01928-w

    Article  MathSciNet  MATH  Google Scholar 

  20. Andreev, V.B., Kopteva, N.: On the convergence uniform with respect to a small parameter of monotone three-point finite-difference approximations. J. Differ. Equ. 34, 921–929 (1998)

    MATH  Google Scholar 

  21. Das, A., Govindarao, L., Mohapatra, J.: A second order weighted monotone numerical scheme for time-delayed parabolic initial-boundary-value problem involving a small parameter. Int. J. Math. Model. Numer. Optim. 12(3), 233–251 (2022)

    Google Scholar 

  22. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992). https://doi.org/10.1007/978-1-4615-3034-3

  23. Yu-Cheng, S., Quan, C.: The numerical solution of a singularly perturbed problem for semilinear parabolic differential equation. Appl. Math. Mech. 12(11), 1047–1056 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type, vol. 23. American Mathematical Society, Providence (1968)

    Book  Google Scholar 

  25. Shishkin, G.I., Shishkina, L.P.: Difference Methods for Singular Perturbation Problems. CRC Press, New York (2008)

    Book  MATH  Google Scholar 

  26. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: On piecewise-uniform meshes for upwind- and central-difference operators for solving singularly perturbed problems. IMA J. Numer. Anal. 15(1), 89–99 (1995). https://doi.org/10.1093/imanum/15.1.89

    Article  MathSciNet  MATH  Google Scholar 

  27. Arslan, D.: A uniformly convergent numerical study on Bakhvalov-Shishkin mesh for singularly perturbed problem. Commun. Math. 11(1), 161–171 (2020)

    Google Scholar 

  28. Reddy, N.R., Mohapatra, J.: An efficient numerical method for singularly perturbed two point boundary value problems exhibiting boundary layers. Natl. Acad. Sci. Lett. 38(4), 355–359 (2014). https://doi.org/10.1007/s40009-015-0350-z

    Article  MathSciNet  Google Scholar 

  29. Clavero, C., Gracia, J.L., Jorge, J.C.: High-order numerical methods for one-dimensional parabolic singularly perturbed problems with regular layers. Numer. Methods Partial Differ. Equ. 21(1), 149–169 (2005). https://doi.org/10.1007/s12190-021-01633-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Stynes, M., Roos, H.G.: The midpoint upwind scheme. Appl. Numer. Math. 23(3), 361–374 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author Ms. S. Priyadarshana conveys her profound gratitude to the Department of Science and Technology, Govt. of India for providing INSPIRE fellowship (IF 180938).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mohapatra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Informed consent

On behalf of the authors, Dr. Jugal Mohapatra shall be communicating the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshana, S., Mohapatra, J. Weighted variable based numerical scheme for time-lagged semilinear parabolic problems including small parameter. J. Appl. Math. Comput. 69, 2439–2463 (2023). https://doi.org/10.1007/s12190-023-01841-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01841-3

Keywords

Mathematics Subject Classification

Navigation