Skip to main content
Log in

Stability and controllability for Volterra integro-dynamical matrix Sylvester impulsive system on time scales

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we study Ulam’s–Hyer stability and exact controllability results for Volterra integro-dynamic matrix Sylvester impulsive evolution system on time scales. By using the vectorization operator, we convert the Volterra integro-dynamic matrix Sylvester impulsive system on time scale to an equivalent Volterra integro-dynamic impulsive Kronecker product system on time scale. It has two sections: one on the stability of Ulam’s–Hyer types and the other on the exact controllability results. We used the evolution operator theory, Banach fixed point theorem and nonlinear functional analysis to establish these results. Finally, we’ve given some numerical and theoretical examples of the way those advanced analytical consequences may be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Andrs, S., Mszros, A.R.: Ulam–Hyer’s stability of dynamic equations on time scales via Picard operators. Appl. Math. Comput. 219, 4853–4864 (2013)

  2. Agarwal, R.P., Awan, A.S., Regan, D.O., Youns, A.: Linear impulsive Volterra intrgro-dynamic system on time scales. Adv. Differ. Equ. 2014, 6 (2014)

    Article  Google Scholar 

  3. Adivar, M.: Principal matrix solutions and variation of parameters for Volterra integro-dynamic equations on time scales. Glasg. Math. J. 53, 463–480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agarwal, R.P., Bohner, M., Regan, D.O., Peterson, A.: Dynamic equations on time scales: a survey. J. Comput. Appl. Math. 4, 1–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ali, Z., Zada, A., Shan, K.: Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem. Bound. Value Probl. 201, 1–16 (2018)

    MathSciNet  Google Scholar 

  6. Atici, F.M., Biles, D.C.: First and second order dynamic equations with impulse. Adv. Differ. Equ. 2, 119–132 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Appa Rao, B.V., Prasad, K.A.S.N.V.: Existence of psi-bounded solutions for Sylvester matrix dynamical systems on time scales. Filomat 32(12), 4209–4219 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Appa Rao, B.V., Prasad, K.A.S.N.V.: Controllability and observability of Sylvester matrix dynamical systems on time scales. Kyungpook Math. J. 56, 529–539 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bentout, S., Tarik, M.T.: Global analysis of an infection age model with a class of nonlinear incidence rates. J. Math. Anal. Appl. 434(2), 1211–1239 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bentout, S., Abdessamad, T., Djilali, S.: Age-structured Modeling of COVID-19 Epidemic in the USA, UAE and Algeria. Alex. Eng. J. 60(1), 401–411 (2021). https://doi.org/10.1016/j.aej.2020.08.053

    Article  Google Scholar 

  11. Bentout, S., Chekroun, A., Toshikazu, K.: Parameter estimation and prediction for coronavirus disease outbreak 2019 (COVID-19) in Algeria. AIMS Public Health 7(2), 306–3018 (2020)

    Article  Google Scholar 

  12. Bentout, S., Yuming, C., Djilali, S.: Global dynamics of an SEIR model with two age structures and a nonlinear incidence. Acta Appl. Math. 171, 7 (2021). https://doi.org/10.1007/s10440-020-00369-z

    Article  MathSciNet  MATH  Google Scholar 

  13. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales an Introduction with Applications. Birkhauser, Boston (2001)

    Book  MATH  Google Scholar 

  14. Bohner, M., Peterson, A.: Advances in Dynamic Equation on Time Scales. Birkhauser, Boston (2003)

    Book  MATH  Google Scholar 

  15. Benchohra, M., Henderson, J., Ntoutas, S.K.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York (2006)

    Book  Google Scholar 

  16. Choi, S.K., Im, D.M., Koo, N.: Stability of linear dynamic systems on time scales. J. Differ. Equ. Appl. 15, 167–183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Djilali, S., Bentout, S.: Pattern formations of a delayed diffusive predator-prey model with predator harvesting and prey social behavior. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7340

    Article  MathSciNet  MATH  Google Scholar 

  18. Djilali, S., Bentout, S.: Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior. Acta Appl. Math. 169(1), 125–43 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dacunha, J.J.: stability for time varying linear dynamical systems on time scales. J. Comput. Appl. Math. 17, 381–410 (2005)

    Article  MATH  Google Scholar 

  20. Dacunha, J.J.: Transition matrix and generalized matrix exponential via the Peano–Baker series. J. Differ. Equ. Appl. 11, 1245–1264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dubey, B., George, R.K.: Controllability of impulsive matrix Lyapunov system. Appl. Math. Comput. 3254, 327–339 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Ghanbari, B., Djilali, S.: Mathematical and numerical analysis of a three-species predator–prey model with herd behavior and time fractional-order derivative. Math. Methods Appl. Sci. 43(4), 1736–1752 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hilger, S.: Ein Ma\(\beta \)kettenkalkul mit anwendung auf zentrmsmannigfaltingkeiten. Ph.D. Thesis, universi. Wurzburg (1988)

  24. Hilger, S.: Analysis on measure chains a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, H., Xiang, X.: A class of the first order impulsive dynamic equations on time scales. Nonlinear Anal. 69, 2803–2811 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lupulescu, V., Younus, A.: On controllability and observability for a class of linear impulsive dynamic systems on time scales. Math. Comput. Model. 54, 1300–1310 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Murty, M.S.N., Suresh Kumar, G., Appa Rao, B.V., Prasad, K.A.S.N.V.: On Controllability of Fuzzy Dynamical Matrix Lyapunov Systems. Analele University, di vest Timsora,Seria mathematica informatica LI 2, 73–86 (2013)

  28. Murty, M.S.N., Anjaneyulu, D., Suresh Kumar, G.: Conditioning of three-point boundary value problems associated with first order matrix Lyapunov systems. J. Nonlinear Sci. Appl. 4(2), 115–125 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Murty, M.S.N., Suresh Kumar, G.: On \(\Psi \)-bounded solutions for non-homogeneous matrix Lyapunov systems on \(\mathbb{R}\). Electron. J. Qual. Theory Differ. Equ. 2009(62), 1–12 (2009)

    Article  MathSciNet  Google Scholar 

  30. Murty, M.S.N., Kumar, G.S., Lakshmi, P.N., Anjaneyulu, D.: On \(\Psi \)-instability of non-linear matrix Lyapunov systems. Demonstr. Math. 42(4), 731–743 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Murty, M.S.N., Suresh Kumar, G.: On dichotomy and conditioning for two-point boundary value problems associated with first order matrix Lyapunov systems. J. Korean Math. Soc. 45(5), 1361–1378 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Murty, M.S.N., Suresh Kumar, G.: \(\Psi \)-asymptotic stability of non-linear matrix Lypunov systems. J. Nonlinear Sci. Appl. 5, 115–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mezouaghi, A., Djilali, S., Bentout, S., Biroud, K.: Bifurcation analysis of a diffusive predator–prey model with prey social behavior and predator harvesting. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7807

    Article  MATH  Google Scholar 

  34. Shen, Y.: The Ulam stability of first order linear dynamic equations on time scales. Results Math. 72, 1881–1895 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rao, T.S., Suresh Kumar, G., Vasavi, C., Appa Rao, B.V.: On the controllaboilty of fuzzy difference control systems. IJCIET 12, 723–732 (2017)

    Google Scholar 

  36. Rao, T.S., Kumar, G.S., Murty, M.S.N.: \(\Psi \)-stability for nonlinear difference equations. Thai J. Math. 16, 801–815 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Singh, V.K., Postnikov, E.B.: Operational matrix approach for solution of integro-differential equations arising in theory of anomalous relaxation processes in vicinity of singular point. Appl. Math. Model. 37, 6609–6616 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tisdell, C.C., Zaidi, A.H.: Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling. Nonlinear Anal. 68(11), 3504–3524 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, J.R., Li, X.: A uniform method to Ulam–Hyers stability for some linear fractional equations. Meditter. J. Math. 13, 625–635 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, J.R., Feckan, M., Zhou, Y.: Ulam’s type stability of impulsive ordinary differential equation. J. Math. Anal. Appl. 395, 258–264 (2012)

  41. Wang, C., Agarwal, R.P.: Weighted piecewise pseudo almost automorphic functions with application to abstract impulsive Nabla-dynamic equations on time scales. Adv. Differ. Equ. 2014, 153 (2014)

    Article  MATH  Google Scholar 

  42. Wang, C., Agarwal, R.P., O’Regan, D.: Recent development of time scales and related topics on dynamic equations. Mem. Differ. Equ. Math. Phys. 67, 131–135 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Zhao, S., Sun, J.: Controllability and observability of a class of time varying impulsive systems. Nonlinear Anal. Real World Appl. 10, 1370–1380 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the editor and anonymous reviewers for constructive comments and suggestions to improve the quality of this paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this article. All authors read and approved the final manuscript.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreenivasulu, A., Rao, B.V.A. Stability and controllability for Volterra integro-dynamical matrix Sylvester impulsive system on time scales. J. Appl. Math. Comput. 68, 3705–3720 (2022). https://doi.org/10.1007/s12190-021-01688-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01688-6

Keywords

Mathematics Subject Classification

Navigation