Skip to main content
Log in

A two-gird method for finite element solution of parabolic integro-differential equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we study the unconditional convergence and error estimates of a two-grid finite element method for the semilinear parabolic integro-differential equations. By using a temporal-spatial error splitting technique, optimal \(L^p\) and \(H^1\) error estimates of the finite element method can be obtained. Moreover, to deal with the semilinearity of the model, we use the two-grid method. Optimal error estimates in \(L^2\) and \(H^1\)-norms of two-grid solution are derived without any time-step size conditions. Finally, some numerical results are provided to confirm the theoretical analysis, and show the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Miller, R.K.: An integro-differential equation for rigid heat conductions with memory. J. Math. Anal. Appl. 66, 313–332 (1978)

    Article  MathSciNet  Google Scholar 

  2. Raynal, M.: On some nonlinear problems of diffusion. Lect. Notes Math. 737, 251–266 (1979)

    Article  MathSciNet  Google Scholar 

  3. Allegretto, W., Lin, Y., Zhou, A.: A box scheme for coupled systems resulting from microsensor thermistor problems. Dyn. Discrete Contin. Impuls. Syst. 5, 209–223 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Thomée, V., Zhang, N.Y.: Error estimates for semidiscrete finite element methods for parabolic integro-differential equations. Math. Comp. 53, 121–139 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lin, Y., Zhang, T.: The stability of Ritz-Volterra projection and error estimates for finite element methods for a class of integro-differential equations of parabolic type. Appl. Math. 36, 123–133 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lin, Y.: Semi-discrete finite element approximations for linear parabolic integro-differential equations with integrable kernels. J. Integ. E. Appl. 10, 51–83 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Zhu, A., Xu, T., Xu, Q.: Weak galerkin finite element methods for linear parabolic integro-differential equations. Numer. Meth. Part. D. E. 32, 1357–1377 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhou, J., Xu, D., Dai, X.: Weak Galerkin finite element method for the parabolic integro-differential equation with weakly singular kernel. Comp. Appl. Math. 38, 1–12 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Xu, D.: Finite element methods of the two nonlinear integro-differential equations. Appl. Math. Comp. 58, 241–273 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sharma, N., Sharma, K.K.: Finite element method for a nonlinear parabolic integro-differential equation in higher spatial dimensions. Appl. Math. Mode. 39, 7338–7350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kumar, L., Sista, S.G., Sreenadh, K.: Finite element analysis of parabolic integro-differential equations of Kirchhoff type. Math. Meth. Appl. Sci. 43, 9129–9150 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xu, J.: A novel two-grid method for semilinear equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xu, J.: Two-grid discretization techniques for linear and non-linear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretization for nonlinear problems. Adv. Comput. Math. 14, 293–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bi, C., Ginting, V.: Two-grid discontinuous Galerkin method for quasi-linear elliptic problems. J. Sci. Comput. 49, 311–331 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dawson, C., Wheeler, M.: Two-grid methods for mixed finite element approximations of nonlinear parabolic equations. Contemp. Math. 180, 191–203 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, D., Park, E.J., Seo, B.: Two-scale product approximation for semilinear parabolic problem in mixed methods. J. Korean Math. Soc. 51, 267–288 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, Y.P., Huang, Y.Q., Yu, D.H.: A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations. Int. J. Numer. Meth. Engng. 57, 193–209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, Y.P., Zeng, J.Y., Zhou, J.: \(L^p\) error estimates of two-grid method for miscible displacement problem. J. Sci. Comput. 69, 28–51 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, S., Chen, Y.P., Huang, Y.Q., Zhou, J.: An efficient two grid method for miscible displacement problem approximated by mixed finite element methods. Comput. Math. Appl. 77, 752–764 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, C.J., Liu, W.: A two-grid method for finite volume element approximations of second-order nonlinear hyperbolic equations. J. Comput. Appl. Math. 233, 2975–2984 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, K., Tan, Z.: A Two-grid algorithm of fully discrete galerkin finite element methods for a nonlinear hyperbolic equation. Numer. Math. Theor. Meth. Appl. 13, 1050–1067 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou, J., Hu, X., Zhong, L., Shu, S., Chen, L.: Two-grid methods for Maxwell eigenvalue problems. SIAM J. Numer. Anal. 52, 2027–2047 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hu, H.Z.: Two-grid method for two-dimensional nonlinear Schrödinger equation by finite element method. Numer. Meth. Part. D. E. 34, 385–400 (2018)

    Article  MATH  Google Scholar 

  25. Zhang, H., Yin, J., Jin, J.: A two-grid finite-volume method for the Schrödinger equation. Adv. Appl. Math. Mech. 13, 176–190 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y., Du, Y.W., Li, H., Li, J.C., He, S.: A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative. Comput. Math. Appl. 70, 2474–2492 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Y., Du, Y.W., Li, H., Wang, J.F.: A two-grid finite element approximation for a nonlinear time-fractional cable equation. Nonlinear Dynam. 85, 2535–2548 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Q., Chen, Y.P., Huang, Y.Q., Wang, Y.: Two-grid methods for nonlinear time fractional diffusion equations by \(L^1\)-Galerkin FEM. Mathe. Comput. Simul. 185, 436–451 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, W., Hong, Q.: Two-grid economical algorithms for parabolic integro-differential equations with nonlinear memory. Appl. Nume. Math. 142, 28–46 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lai, X., Yuan, Y.: Galerkin alternating-direction method for a kind of three-dimensional nonlinear hyperbolic problems. Comput. Math. Appl. 57, 384–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gao, H.: Unconditional optimal error estimates of BDF-Galerkin FEMs for nonlinear thermistor equations. J. Sci. Comput. 66, 504–527 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Si, Z., Wang, J., Sun, W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations. Numer. Math. 134, 139–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Adams, R.A., Fournier, J.J.F.: Sobolev spaces. Academic press, Cambridge (2003)

    MATH  Google Scholar 

  37. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38, 437–445 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lin, Q., Yan, N.N.: Finite element methods: accuracy and improvement. Science Press, Beijing (2006)

    Google Scholar 

  39. Lin, Q., Xie, H.: Superconvergence measurement for general meshes by linear finite element method. Math. Pract. Theory 41, 138–152 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Y.Z. Chen, L.C. Wu, Second order elliptic equations and elliptic systems, American Mathematical Soc., 1998

  41. Larson, M.G., Bengzon, F.: The finite element method: theory, implementation, and applications, Springer Science+Business Media, (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the Science and Technology Plan Project of Hunan Province (Grant No. 2016TP1020), the “Double First-Class” Applied Characteristic Discipline in Hunan Province(Xiangjiaotong[2018]469) and the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University (Grant No. 2021015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K. A two-gird method for finite element solution of parabolic integro-differential equations. J. Appl. Math. Comput. 68, 3473–3490 (2022). https://doi.org/10.1007/s12190-021-01670-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01670-2

Keywords

Mathematics Subject Classification

Navigation