Skip to main content
Log in

Orthogonal spline collocation method for the two-dimensional time fractional mobile-immobile equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The objective of this paper is to find the numerical solution of two-dimensional multi-term time fractional mobile-immobile equation. The proposed technique is based on the arbitrary-order orthogonal spline collocation method for the spatial discretization, the L1 approximation for the Caputo fractional derivative, and a second-order backward differentiation formula in time. The stability and convergence are proved in detail. Then, the convergence analysis is validated by a number of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yanik, E.G., Fairweather, G.: Finite element methods for parabolic and hyperbolic partial integrodifferential equations. Nonlinear Anal. 12, 785–809 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Shiralashetti, S.C., Deshi, A.B.: An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations. Nonlinear Dyn. 83, 293–303 (2016)

    Article  MathSciNet  Google Scholar 

  3. Srivastava, V., Rai, K.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51, 616–624 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhang, H., Liu, F., Phanikumar, M., Meerschaert, M.: A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. 66, 693–701 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lyu, P., Liang, Y., Wang, Z.: A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation. Appl. Numer. Math. 151, 448–471 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Qiao, L., Wang, Z., Xu, D.: An alternating direction implicit orthogonal spline collocation method for the two-dimensional multi-term time fractional integro-differential equation. Appl. Numer. Math. 151, 199–212 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nigmatullin, R.: To the theoretical explanation of the universal response. Physica Status (B) Basic Res. 123, 739–745 (1984)

  9. Nigmatullin, R.: Realization of the generalized transfer equation in a medium with fractal geometry. Physica Status (B): Basic Res. 133, 425–430 (1986)

  10. Schumer, R., Benson, D., Meerschaert, M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39, 10 (2003)

    Article  Google Scholar 

  11. Zhang, Y., Benson, D., Reeves, D.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561–581 (2009)

    Article  Google Scholar 

  12. Qiu, W., Xu, D., Guo, J.: Numerical solution of the fourth-order partial integro-differential equation with multi-term kernels by the Sinc-collocation method based on the double exponential transfor-mation. Appl. Math. Comput. 392, 125693 (2021)

    MATH  Google Scholar 

  13. Wang, Z., Cen, D., Mo, Y.: Sharp error estimate of a compact L1-ADI scheme for the two-dimensional time-fractional integro-differential equation with singular kernels. Appl. Numer. Math. 159, 190–203 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cen, D., Wang, Z., Mo, Y.: Second order difference schemes for time-fractional KdV-Burgers equation with initial singularity. Appl. Math. Lett. 112, 106829 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lyu, P., Vong, S.: Second-order and nonuniform time-stepping schemes for time fractional evolution equations with timeCspace dependent coefficients. J. Sci. Comput. 89, 49 (2021)

    Article  MATH  Google Scholar 

  16. Liu, Q., Liu, F., Turner, I.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Liu, Z., Li, X.: A Crank-Nicolson difference scheme for the time variable fractional mobile-immobile advection-dispersion equation. Appl. Math. Comput. 56, 391–410 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Zhao, Z., Li, C.: Fractional difference/finite element approximations for the time-space fractional telegraph equation. Appl. Math. Comput. 219, 2975–2988 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Yin, B., Liu, Y., Hong, L.: A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations. Appl. Math. Comput. 368, 124799 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Qiu, W., Xu, D., Guo, J., Zhou, J.: A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model. Numer. Algor. 85, 39–58 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhao, J., Fang, Z., Li, H., Liu, Y.: Finite volume element method with the WSGD formula for nonlinear fractional mobile/immobile transport equations. Adv. Differ. Equ. 2020, 360 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, J., Liu, F., Anh, V.: Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338, 1364–1377 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pani, A., Fairweather, G., Fernandes, R.: Orthogonal spline collocation methods for partial integro-differential equations. SIAM J. Numer. Anal. 30, 248–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, X., Zhang, H., Xu, D.: Alternatting direction implicit OSC scheme for the two-dimensional fractional evolution equation with a weakly singular kernel. Acta Math. Sci. 38B, 1689–1711 (2018)

    MATH  Google Scholar 

  25. Qiao, L., Xu, D.: BDF ADI orthogonal spline collocation scheme for the fractional integro-differential equation with two weakly singular kernels. Comput. Math. Appl. 78, 3807–3820 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Qiao, L., Qiu, W., Xu, D.: A second-order ADI difference scheme based on non-uniform meshes for the three-dimensional nonlocal evolution problem. Comput. Math. Appl. 102, 137–145 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Qiao, L., Xu, D.: A fast ADI orthogonal spline collocation method with graded meshes for the two-dimensional fractional integro-differential equation. Adv. Comput. Math. 47, 64 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Atangana, A., Baleanu, D.: Numerical solution of a kind of fractional parabolic equations via two difference schemes. Abstr. Appl. Anal. 141467 (2013)

  29. Yan, Y., Fairweather, G.: Orthogonal spline collocation methods for some partial integro-differential equations. SIAM J. Numer. Anal. 29, 755–768 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, Z., Wu, X.: A fully discrete scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fairweather, G., Gladwell, I.: Algorithms for almost block diagonal linear systems. SIAM Rev. 46, 49–58 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fernandes, R., Fairweather, G.: Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables. Numer. Math. Part. Differ. Equ. 9, 191–211 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pani, A., Fairweather, G., Fernandes, R.: Alternating direction implicit orthogonal spline collocation methods for an evolution equation with a positive-type memory term. SIAM J. Numer. Anal. 46, 344–364 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and reviewers for their constructive comments and suggestions, which helped the authors to improve the quality of the paper significantly. This research was partly supported by the National Natural Science Foundation of China (No. 12101080, 11701103), Young Top-notch Talent Program of Guangdong Province (No. 2017GC010379), Natural Science Foundation of Guangdong Province (No. 2019A1515010876), the Project of Science and Technology of Guangzhou (No. 201904010341, 202102020704), the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University (2021023), and the Project of Department of Education of Guangdong Province (No. 2017KTSCX062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, L., Xu, D. & Wang, Z. Orthogonal spline collocation method for the two-dimensional time fractional mobile-immobile equation. J. Appl. Math. Comput. 68, 3199–3217 (2022). https://doi.org/10.1007/s12190-021-01661-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01661-3

Keywords

Mathematics Subject Classification

Navigation