Skip to main content
Log in

Effective numerical technique for solving variable order integro-differential equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this article, an effective numerical technique for solving the variable order Fredholm–Volterra integro-differential equations (VO-FV-IDEs), systems of VO-FV-IDEs and variable order Volterra partial integro-differential equations (VO-V-PIDEs) is given. The suggested technique is built on the combination of the spectral collocation method with some types of operational matrices of the variable order fractional differentiation and integration of the shifted fractional Gegenbauer polynomials (SFGPs). The proposed technique reduces the considered problems to systems of algebraic equations that are straightforward to solve. The error bound estimation of using SFGPs is discussed. Finally, the suggested technique’s authenticity and efficacy are tested via presenting several numerical applications. Comparisons between the outcomes achieved by implementing the proposed method with other numerical methods in the existing literature are held, the obtained numerical results of these applications reveal the high precision and performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1(4), 277–300 (1993)

    Article  MathSciNet  Google Scholar 

  2. Neto, J.P., Coelho, R.M., Valerio, D., Vinga, S., Sierociuk, D., Malesza, W., Macias, M., Dzielinski, A.: Simplifying biochemical tumorous bone remodeling models through variable order derivatives. Comput. Math. Appl. 75(9), 3147–3157 (2018)

    Article  MathSciNet  Google Scholar 

  3. Moghaddam, B.P., Machado, J.A.T.: Time analysis of forced variable-order fractional Van der Pol oscillator. Eur. Phys. J. Spec. Top. 226(16), 3803–3810 (2017)

    Article  Google Scholar 

  4. Coimbra, C.F.: Mechanics with variable-order differential operators. Ann. Phys. 12(11–12), 692–703 (2003)

    Article  MathSciNet  Google Scholar 

  5. Almeida, R., Bastos, N.R., Monteiro, M.T.T.: Modeling some real phenomena by fractional differential equations. Math. Methods Appl. Sci. 39(16), 4846–4855 (2016)

    Article  MathSciNet  Google Scholar 

  6. Almeida, R., Bastos, N.R., Monteiro, M.T.T.: A fractional Malthusian growth model with variable order using an optimization approach. Stat. Optim. Inf. Comput. 6(1), 4–11 (2018)

    Article  MathSciNet  Google Scholar 

  7. Smetanin, B.I.: On an integral equation for axially-symmetric problems in the case of an elastic body containing an inclusion. J. Appl. Math. Mech. 55(3), 371–375 (1991)

    Article  MathSciNet  Google Scholar 

  8. Shah, P.V., Patel, A.D., Salehbhai, I.A., Shukla, A.K.: Analytic solution for the electric circuit model in fractional order. In: Abstract and applied analysis, Hindawi (2014)

  9. Moreles, M.A., Lainez, R.: Mathematical modelling of fractional order circuits. arXiv preprint arXiv:1602.03541, (2016)

  10. Doha, E.H., Abdelkawy, M.A., Amin, A.Z.M., Lopes, A.M.: On spectral methods for solving variable-order fractional integro-differential equations. Comput. Appl. Math. 37(3), 3937–3950 (2018)

    Article  MathSciNet  Google Scholar 

  11. Wang, J., Liu, L., Chen, Y., Liu, L., Liu, D.Y.: Numerical study for a class of variable order fractional integral-differential equation in terms of Bernstein polynomials. Comput. Model. Eng. Sci. (2015)

  12. Sun, K., Zhu, M.: Numerical algorithm to solve a class of variable order fractional integral-differential equation based on Chebyshev polynomials. Math. Prob. Eng. (2015)

  13. Doha, E.H., Abdelkawy, M.A., Amin, A.Z.M., Baleanu, D.: Spectral technique for solving variable-order fractional Volterra integro-differential equations. Numer. Methods Partial Differ. Equ. 34(5), 1659–1677 (2018)

    Article  MathSciNet  Google Scholar 

  14. Ganji, R.M., Jafari, H., Nemati, S.: A new approach for solving integro-differential equations of variable order. J. Comput. Appl. Math. 379, 112946 (2020)

    Article  MathSciNet  Google Scholar 

  15. Tuan, N. H., Nemati, S., Ganji, R. M., Jafari, H.: Numerical solution of multi-variable order fractional integro-differential equations using the Bernstein polynomials. Eng. Comput, pp. 1–9 (2020)

  16. Babaei, A., Jafari, H., Banihashemi, S.: Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method. J. Comput. Appl. Math. 377, 112908 (2020)

    Article  MathSciNet  Google Scholar 

  17. Liu, J., Li, X., Wu, L.: An operational matrix technique for solving variable-order fractional differential-integral equation based on the second kind of Chebyshev polynomials. Adv. Math. Phys. (2016)

  18. Dehestani, H., Ordokhani, Y., Razzaghi, M.: Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations. Eng. Comput. 37(3), 1791–1806 (2021)

    Article  Google Scholar 

  19. Yi, M., Huang, J., Wang, L.: Operational matrix method for solving variable order fractional integro-differential equations. Comput. Model. Eng. Sci. 96, 361–377 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Yüzbaşı, Ş: A collocation method based on Bernstein polynomials to solve nonlinear Fredholm–Volterra integro-differential equations. Appl. Math. Comput. 273, 142–154 (2016)

    MathSciNet  MATH  Google Scholar 

  21. El-Kalaawy, A.A., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A., Hafez, R.M., Amin, A.Z.M., Baleanu, D., Zaky, M.A.: A computationally efficient method for a class of fractional variational and optimal control problems using fractional Gegenbauer functions. Roman. Rep. Phys. 70(2), 90109 (2018)

    Google Scholar 

  22. Abdelkawy, M.A., Lopes, A.M., Babatin, M.M.: Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order. Chaos Solitons Fractals 134, 109721 (2020)

    Article  MathSciNet  Google Scholar 

  23. Elgindy, K.T., Smith-Miles, K.A.: Solving boundary value problems, integral, and integro-differential equations using Gegenbauer integration matrices. J. Comput. Appl. Math. 237(1), 307–325 (2013)

    Article  MathSciNet  Google Scholar 

  24. Izadkhah, M.M., Saberi-Nadjafi, J.: Gegenbauer spectral method for time-fractional convection–diffusion equations with variable coefficients. Math. Methods Appl. Sci. 38(15), 3183–3194 (2015)

    Article  MathSciNet  Google Scholar 

  25. Ahmed, H.F.: Gegenbauer collocation algorithm for solving two-dimensional time-space fractional diffusion equations. CR Acad. Bulg. Sci 72(8), 1024–1035 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Ahmed, H.F., Bahgat, M.S.M., Zaki, M.: Numerical study of multidimensional fractional time and space coupled Burgers’ equations. Pramana 94(1), 1–22 (2020)

  27. Ahmed, H.F., Moubarak, M.R.A., Hashem, W.A.: Gegenbauer spectral tau algorithm for solving fractional telegraph equation with convergence analysis. Pramana 95(2), 1–16 (2021)

    Google Scholar 

  28. El-Gindy, T., Ahmed, H.F., Melad, M.B.: Shifted Gegenbauer operational matrix and its applications for solving fractional differential equations. J. Egypt. Math. Soc. 26(1), 72–90 (2018)

    Article  MathSciNet  Google Scholar 

  29. Ahmed, H.F., Melad, M.B.: New numerical approach for solving fractional differential-algebraic equations. J. Fract. Calculus Appl. 9(2), 141–162 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Ahmed, H.F., Melad, M.B.: A new approach for solving fractional optimal control problems using shifted ultraspherical polynomials. Prog. Fract. Differ. Appl. 4(3), 179–195 (2018)

    Article  Google Scholar 

  31. Ahmed, H.F.: A numerical technique for solving multi-dimensional fractional optimal control problems. J. Taibah Univers. Sci. 12(5), 494–505 (2018)

    Article  Google Scholar 

  32. Samko, S.G.: Fractional integration and differentiation of variable order. Anal. Math. 21(3), 213–236 (1995)

    Article  MathSciNet  Google Scholar 

  33. Doha, E.H.: The coefficients of differentiated expansions and derivatives of ultraspherical polynomials. Comput. Math. Appl. 21(2–3), 115–122 (1991)

    Article  MathSciNet  Google Scholar 

  34. Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186(1), 286–293 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina B. Melad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Gindy, T.M., Ahmed, H.F. & Melad, M.B. Effective numerical technique for solving variable order integro-differential equations. J. Appl. Math. Comput. 68, 2823–2855 (2022). https://doi.org/10.1007/s12190-021-01640-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01640-8

Keywords

Mathematics Subject Classification

Navigation