Skip to main content

Advertisement

Log in

Modeling effects of impulsive control strategies on the spread of mosquito borne disease: role of latent period

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Controlling the mosquito population is a big challenge for humans. In this paper, we have studied the effects of impulsive control strategies on the spread of mosquito-borne diseases considering the latent period. Therefore, we proposed and analyzed a mosquito-borne disease model governed by a system of impulsive delay differential equations. The proposed mosquito-borne disease model also accounts for three different impulsive control strategies, namely vaccination, pesticides, and adulticides. Two thresholds \(R_1\) and \(R_2\) established for the global attractivity of the disease-free state and the persistence of the endemic state. The non-trivial disease-free solution of the proposed model is globally asymptotically stable if \(R_1\) and \(R_2\) less than one. It is shown that a unique positive endemic periodic solution exists only when \( R_1 \) and \( R_2\) greater than unity, which makes for the persistence of the disease. Numerical simulation supports the analytical finding and shows the effectiveness of the impulse control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bacaer, N., Dads, E.H.A.: Genealogy with seasonality, the basic reproduction number, and the influenza pandemic. J. Math. Biol. 62, 741–762 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bacaer, N., Guernaoui, S.: The epidemic threshold of vector-borne diseases with seasonality. J. Math. Biol. 53, 421–436 (2006)

    Article  MathSciNet  Google Scholar 

  3. Becker, N., Petrick, D., Boase, C., Lane, J., Zgomba, M., Dahl, C., Kaiser, A.: Mosquitoes and Their Control, 2nd edn. Springer, New York (2010)

    Book  Google Scholar 

  4. Chavez, J.P., Gotz, T., Siegmund, S., Wijaya, K.P.: An SIR-Dengue transmission model with seasonal effects and impulsive control. Math. Biosci. 289, 29–39 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cheng, Y., Pan, Q., He, M.: Disease control of delay SEIR model with nonlinear incidence rate and vertical transmission. Comput. Math. Methods Med. 830237 (2013). https://doi.org/10.1155/2013/830237

  6. Cheng, Y., Pan, Q., He, M.: Stability analysis of hepatitis B virus model with incomplete immunization of hepB vaccine. Abstr. Appl. Anal. 427639 (2014). https://doi.org/10.1155/2014/427639

  7. Dias, C., Moraes, D.: Essential oils and their compounds as aedes aegypti l. (diptera: Culicidae) larvicides: review. Parasitol. Res. 113(2), 565–592 (2014)

    Article  Google Scholar 

  8. d’Onofrio, A.: Stability properties of pulse vaccination strategy in SEIR epidemic model. Math. Biosci. 179, 57–72 (2002)

  9. Dumont, Y., Tchuenche, J.: Mathematical studies on the sterile insect technique for the chikungunya disease and Aedes albopictus. J. Math. Biol. 65(5), 809–854 (2011)

    Article  MathSciNet  Google Scholar 

  10. Fatoorehchi, H., Alidadi, M., Rach, R., Shojaeian, A.: Theoretical and experimental investigation of thermal dynamics of Steinhart-hart negative temperature coefficient thermistors. J. Heat Transf. 141, 072003 (2019)

    Article  Google Scholar 

  11. Gao, S., Chen, L., Teng, Z.: Pulse vaccination of an SEIR epidemic model with time delay. Nonlinear Anal. RealWorld Appl. 9, 599–607 (2008)

    Article  MathSciNet  Google Scholar 

  12. Gao, S., Teng, Z., Xie, D.: The effects of pulse vaccination on SEIR model with two time delays. Appl. Math. Comput. 201, 282–292 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Hou, J., Teng, Z.: Continuous and impulsive vaccination of SEIR epidemic models with saturation incidence rates. Math. Comput. Simul. 79, 3038–3054 (2009)

    Article  MathSciNet  Google Scholar 

  14. Kuang, Y.: Delay Differential Equation with Application in Population Dynamics, pp. 67–70. Academic Press, New York (1993)

    Google Scholar 

  15. Lakshmikantham, V., Bainov, D., Simeonov, P.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Book  Google Scholar 

  16. Lana, R.M., Carneiroa, T.G., Honoriob, N.A., Codeco, C.: Seasonal and nonseasonal dynamics of aedes aegypti in rio de janeiro, Brazil: fitting mathematical models to trap data. Acta Tropica 129, 25–32 (2014)

    Article  Google Scholar 

  17. Li, W., Pang, Y.: Application of Adomian decomposition method to nonlinear systems. Adv. Differ. Equ. 67, 2020 (2020)

    MathSciNet  Google Scholar 

  18. Lopez-Gatell, H., Alpuche-Aranda, C.M., Santos-Preciado, J.I., Hernandez-Avila, M.: Dengue vaccine: local decisions, global consequences. World Health Organ. 94, 850–855 (2016)

    Article  Google Scholar 

  19. Lou, J., Lou, Y., Wu, J.: Threshold virus dynamics with impulsive antiretroviral drug effects. J. Math. Biol. 65, 623–652 (2012)

    Article  MathSciNet  Google Scholar 

  20. Ma, C.: A novel computational technique for impulsive fractional differential equations. Symmetry 11, 216 (2019)

    Article  Google Scholar 

  21. Meng, X., Chen, L.: The dynamics of a new SIR epidemic model concerning pulse vaccination strategy. Appl. Math. Comput. 197, 582–597 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Meng, X., Chen, L., Cheng, H.: Two profitless delays for the SEIRS epidemics disease model with nonlinear incidence and pulse vaccination. Appl. Math. Comput. 186, 516–529 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Pates, H., Curtis, C.: Mosquito behavior and vector control. Annu. Rev. Entomol. 50, 53–70 (2004)

    Article  Google Scholar 

  24. Sisodiya, O.S., Misra, O., Dhar, J.: Dynamics of cholera epidemics with impulsive vaccination and disinfection. Math. Biosci. 298, 46–57 (2018)

    Article  MathSciNet  Google Scholar 

  25. Thome, R., Yang, H., Esteva, L.: Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. Math. Biosci. 223, 12–23 (2010)

    Article  MathSciNet  Google Scholar 

  26. Wang, X., Tao, Y., Song, X.: Pulse vaccination on SEIR epidemic model with nonlinear incidence rate. Appl. Math. Comput. 210, 398–404 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Wei, C., Chen, L.: A delayed epidemic model with pulse vaccination. Discrete Dyn. Nat. Soc. 746951 (2008). https://doi.org/10.1155/2008/746951

  28. WHO.: Temephos in Drinking Water: Use for Vector Control in Drinking water Sources and Containers. https://www.who.int/water_sanitation_health/dwq/chemicals/temephos.pdf

  29. Xiao, Y., Chen, L.: Modelling and analysis of a predator-prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)

    Article  MathSciNet  Google Scholar 

  30. Xin-zhu, M., Lan-sun, C., Zhi-tao, S.: Global dynamics behaviors for new delay SEIR epidemic disease model with vertical transmission and pulse vaccination. Appl. Math. Mech. 28(9), 1259–1271 (2007)

    Article  MathSciNet  Google Scholar 

  31. Yang, C.X., Nie, L.F.: Modelling the use of impulsive vaccination to control rift valley fever virus transmission. Adv. Differ. Equ. 134, 1–18 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, T., Meng, X., Zhang, T.: SVEIRS: a new epidemic disease model with time delays and impulsive effects. Abstr. Appl. Anal. 542154 (2014). https://doi.org/10.1155/2014/542154

  33. Zhang, T., Teng, Z.: Pulse vaccination delayed SEIRS epidemic model with saturation incidence. Appl. Math. Model. 32, 1403–1416 (2008)

    Article  MathSciNet  Google Scholar 

  34. Zhao, Z., Chen, L., Xinyu, S.: Impulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate. Math. Comput. Simul. 79, 500–510 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to the reviewers for their valuable suggestions and careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omprakash Singh Sisodiya.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Lemmas

Lemma 1

(see [33]) Let consider the following impulsive system:

$$\begin{aligned} \left\{ \begin{array}{l} p'(t) = a- b p(t), \ \ \ \ \ \ \ t\ne kT\\ p(t^+) = (1- \theta ) p(t), \ \ \ \ t = kT, k \in N^+. \end{array} \right. \end{aligned}$$
(46)

where \(a,b >0, 0<\theta <1.\) Then there exist a unique positive periodic solution of (46)

$$\begin{aligned} {{\widetilde{p}}}_e(t)= \frac{a}{b} + ( p^* - \frac{a}{b}) e^{-b(t-kT)}, \ \ \ \ \ \ kT<t\le (k+1)T. \end{aligned}$$

Which is globally asymptotically stable, where

$$\begin{aligned} p^* = \frac{a (1-\theta )(1-e^{-bT})}{b(1-(1-\theta )e^{-bT})}. \end{aligned}$$

Lemma 2

( See [14, 29]) Let us consider the following delay differential equation

$$\begin{aligned} p'(t)= a_1 p(t-\tau )-a_2 p(t), \end{aligned}$$
(47)

where \( a_1, a_2, \tau > 0\); \(p(t) > 0\) for \( -\tau \le t \le 0.\) We have:

  1. (1)

    if \(a_1 < a_2\), then \(\lim _{t\rightarrow \infty } p(t) = 0;\)

  2. (2)

    if \(a_1 > a_2\), then \(\lim _{t\rightarrow \infty } p(t) = +\infty .\)

Appendix B: Definitions

Definition 1

System (1) is said to be uniformly persistent if there exist positive constants \( Q_i \ge q_i, \ \ i= 1,2,3,4.\) ( both are independent of the initial values ), such that every solution \((S_h(t),I_h(t),R_h(t),A_m(t),S_m(t), I_m(t))\) with positive initial conditions (2) of system (1) satisfies:

$$\begin{aligned} \left\{ \begin{array}{l} q_1 \le S_h(t) \le Q_1, \\ q_2\le R_h(t)\le Q_2 ,\\ q \le I_h(t) + I_m(t) \le Q, \\ q_3\le A_m(t)\le Q_3, \\ q_4\le S_m(t)\le Q_4. \end{array} \right. \end{aligned}$$

Definition 2

System (1) is said to be permanent if there exists a compact region \(\varOmega _0 \in \varOmega \) such that every solution \((S_h(t),I_h(t),R_h(t),A_m(t),S_m(t), I_m(t))\) with initial condition (2) of system (1) will eventually enter and remain in the region \(\varOmega _0.\)

Appendix C: Proof

First, If \([I_h(t)+I_m(t)] > q^* \) for all \( t> t_1,\) then our aim is fulfilled. Second \( I_h(t)+I_m(t) \) oscillates about \(q^*\) for all large t; setting \(t^* = inf_{t> t_1} (I_h(t)+I_m(t)) \le q^*,\) there are two possible cases for \( t^*.\) We hope to show that \( (I_h(t)+I_m(t))\ge q \) for all large t. The conclusion is evident in the first case. For the second case, let \(t^* >0\) and \(\rho >0\) satisfy \( I_h(t^*)+I_m(t^*) = I_h(t^*+\rho )+I_m(t^*+\rho )= q^*,\) and \( ( I_h(t)+I_m(t)) < q^*,\) \(S_h(t) > \rho _1\) for \( t^*< t < t^*+\rho .\) Therefore, it is certain that there exists a \(\psi (0<\psi <\tau )\) such that

$$\begin{aligned} (I_h(t)+I_m(t)) > \frac{q^*}{2} \ \ \ \ for \ \ \ \ t^*< t < t^*+\psi . \end{aligned}$$

In this case, we will discuss three possible cases in terms of the size of \(\rho , \psi ,\) and \(\tau \).

Case I. If \(\rho \le \psi \le \tau \), then \( (I_h(t)+I_m(t)) > \frac{q^*}{2} \ \ \ \ for \ \ \ \ t^*< t < t^*+\rho .\)

Case II. If \(\psi \le \rho \le \tau \), then from equations of system (1), we can deduce \(I'_h(t)+I'_m(t) >-\varPi ( I_h(t)+I_m(t))\), where \(\varPi = max\{\mu _h + \omega _h+d, \mu _m\}\) for \(t \varepsilon [t^*, t^*+\tau \) and \( (I_h(t^*)+I_m(t^*)) = q^*\); it is obvious that \( I_h(t)+I_m(t) = Q_1\) for \( t^*< t < t^*+\psi .\) Case III. If If \(\psi \le T \le \rho \), we will consider the following two cases, respectively.

Case IIIa. For \(t^*< t < t^*+\tau \), it is easy to obtain \(( I_h(t)+I_m(t)) > Q_1 \).

Case IIIb. For \(t^*+\tau< t < t^*+\rho \), it is easy to obtain \((I_h(t)+I_m(t)) > Q_1.\) Then, proceeding exactly as the proof for the above claim, we see that \( ( I_h(t)+I_m(t)) \ge q \) for \(t^*+\tau< t < t^*+\rho \). Since this kind of interval \([t^*, t^*+\rho ]\) is chosen in an arbitrary way ( we only need \(t^*\) to be large), we conclude that of our above discussions, the choices of q are independent of the positive solution, and we have proved that any positive solution of system (1) satisfies \( (I_h(t)+I_m(t)) \ge q \) for all large t. The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisodiya, O.S., Misra, O.P. & Dhar, J. Modeling effects of impulsive control strategies on the spread of mosquito borne disease: role of latent period. J. Appl. Math. Comput. 68, 2589–2615 (2022). https://doi.org/10.1007/s12190-021-01631-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01631-9

Keywords

Mathematics Subject Classification

Navigation