Skip to main content
Log in

New entanglement-assisted quantum MDS codes with length \(n=\frac{q^2+1}{10\mu }\)

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this work, by investigating the decomposition of the defining set of constacyclic codes, we obtain two types of q-ary entanglement-assisted quantum MDS(EAQMDS) codes with length \(n=\frac{q^2+1}{10\mu }\), where m is a positive integer, q is an odd prime power such that \(q=10\mu m+\nu \) or \(q=10\mu m+10\mu -\nu \), and both \(\mu \) and \(\nu \) are odd with \(10\mu =\nu ^2+1\) and \(\nu \ge 3\). Some of which are minimum distance achieves \(\frac{q}{2}+1\) or even greater than \(\frac{q}{2}+1\). Moreover, comparing the parameters with those of all known EAQMDS codes, the q-ary EAQMDS codes exhibited here are not covered in the sense that their parameters are more general than the results what have been previously known in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493–R2496 (1995)

    Article  Google Scholar 

  2. Steane, A.: Multiple particle interference and quantum error correction. Proc. Roy. Soc. Lond. Ser. A 452(1954), 2551–2577 (1996)

    Article  MathSciNet  Google Scholar 

  3. Rains, E.M.: Nonbinary quantum codes. IEEE Trans. Inf. Theory 45(6), 1827–1832 (1997)

    Article  MathSciNet  Google Scholar 

  4. Calderbank, A.R., Rains, E.M., Shor, P.M., et al.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1996)

    Article  MathSciNet  Google Scholar 

  5. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2000)

    Article  MathSciNet  Google Scholar 

  6. Brun, T., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)

    Article  MathSciNet  Google Scholar 

  7. Hsieh, M.H., Devetak, I., Brun, T.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76(6), 2101–2105 (2007)

    Article  Google Scholar 

  8. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77(6), 064302 (2008)

    Article  Google Scholar 

  9. Lai, C.Y., Brun, T.A., Wilde, M.M.: Duality in entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 59(6), 4020–4024 (2013)

    Article  MathSciNet  Google Scholar 

  10. Guo, L., Li, R.: Linear Plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87(3), 1764–1770 (2013)

    Article  Google Scholar 

  11. Qian, J., Zhang, L.: Entanglement-assisted quantum codes from arbitrary binary linear codes. Des. Codes Crytogr. 77(1), 193–202 (2015)

    Article  MathSciNet  Google Scholar 

  12. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2015)

    Article  MathSciNet  Google Scholar 

  13. Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Cryptogr. 86(7), 1565–1572 (2018)

    Article  MathSciNet  Google Scholar 

  14. Brun, T.A., Devetak, I.: Catalytic quantum error correction. IEEE Trans. Inf. Theory 60(6), 3073–3089 (2014)

    Article  MathSciNet  Google Scholar 

  15. Kai, X., Zhu, S.: New quantum MDS codes from Negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)

    Article  MathSciNet  Google Scholar 

  16. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)

    Article  MathSciNet  Google Scholar 

  17. Hsieh, L.Y.: High performance entanglement-assisted quantum LDPC codes need little entanglement. IEEE Trans. Inf. Theory 57(3), 1761–1769 (2011)

    Article  MathSciNet  Google Scholar 

  18. Li, R., Zuo, F., Liu, Y.: A study of skew asymmetric q2-cyclotomic coset and its application. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 12(1), 87–89 (2011) (in Chinese)

  19. Li, R., Xu, G., Lu, L.: Decomposition of defining sets of BCH codes and its applications. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 14(2), 86–89 (2013) (in Chinese)

  20. Chen, J., Huang, Y., Feng, C., et al.: Entanglement-assisted quantum MDS codes constructed from Negacyclic codes. Quantum Inf. Process. 16(12), 1–22 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. 17(10), 273 (2018)

    Article  MathSciNet  Google Scholar 

  22. Koroglu, M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quantum Inf. Process. 18(2), 44 (2018)

    Article  MathSciNet  Google Scholar 

  23. Wang, L., Zhu, S., Sun, Z.: Entanglement-assisted quantum MDS codes from cyclic codes. Quantum Inf. Process. 19(2), 65 (2020)

    Article  MathSciNet  Google Scholar 

  24. Lu, L., Ma, W., Li, R., Ma, Y., Guo, L.: New quantum MDS codes constructed from constacyclic codes (2018). [Online] Available: arXiv:1803.07927

  25. Chen, J., Chen, Y., Yu, D., et al.: Applications of constacyclic codes to some new entanglement-assisted quantum MDS codes. IEEE Access 7, 136641–136657 (2019)

    Article  Google Scholar 

  26. Chen, J., Chen, Y., Feng, C., et al.: Some new classes of entanglement-assisted quantum MDS codes derived from constacyclic codes. IEEE Access 7, 91679–91695 (2019)

    Article  Google Scholar 

  27. Chen, J., Chen, Y., Huang, Y., et al.: New optimal asymmetric quantum codes and quantum convolutional codes derived from constacyclic codes. Quantum Inf. Process. 18(2), 40 (2019)

    Article  MathSciNet  Google Scholar 

  28. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. N.H.P.C (1977)

  29. Hufiman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  30. Aydin, N., Siap, I., Ray-Chaudhuri, D.K.: The structure of 1-generator quasi-twisted codes and new linear codes. Des. Codes Crypt. 24(3), 313–326 (2001)

    Article  MathSciNet  Google Scholar 

  31. Krishna, A., Sarwate, D.V.: Pseudocyclic maximum-distance-separable codes. IEEE Trans. Inf. Theory 36(4), 880–884 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study is supported by the Notional Natural Science Foundation of China (Nos. 61772168, 61972126, 62002093, 12001002, 2008085QA04)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruqin Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Li, P., Sun, Z. et al. New entanglement-assisted quantum MDS codes with length \(n=\frac{q^2+1}{10\mu }\). J. Appl. Math. Comput. 68, 2267–2291 (2022). https://doi.org/10.1007/s12190-021-01617-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01617-7

Keywords

Mathematics Subject Classification

Navigation