Skip to main content
Log in

Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This article deals with two different methods to solve a time fractional partial integro-differential equation. The fractional derivatives are defined here in Caputo sense. The model problem is solved using the Adomian decomposition method and homotopy perturbation method. Moreover, this paper proves the convergence analysis of the solution based on the present methods. Numerical evidences are illustrated in support of the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adomian, G.: A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 135(2), 501–544 (1988)

    Article  MathSciNet  Google Scholar 

  2. Arora, H.L., Abdelwahid, F.I.: Solutions of non-integer order differential equations via the Adomian decomposition method. Appl. Math. Lett. 6(1), 21–23 (1993)

    Article  MathSciNet  Google Scholar 

  3. Atanackovic, T.M., Stankovic, B.: On a system of differential equations with fractional derivatives arising in rod theory. J. Phys. A Math. Theor. 37(4), 1241 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Assaleh, K., Ahmad, W.M.: Modeling of speech signals using fractional calculus, 9th international symposium on signal processing and its applications, pp. 1-4, (2007)

  5. Alkahtania, B.S., Goswami, P., Algahtanic, O.J.: Adomian decomposition method for n-dimensional diffusion model in fractal heat transfer. J. Nonlinear Sci. Appl. (2016). https://doi.org/10.1002/mma.7369

    Article  MathSciNet  Google Scholar 

  6. Anjum, N., He, J.H.: Homotopy perturbation method for NMEMS oscillators. Meth. Appl. Sci, Math (2020). pp.1-15. https://doi.org/10.1002/mma.6583

  7. Anjum, N., Hui, C.H., He, J.H.: Two-scale fractal theory for the population dynamics. Fractals (2021). https://doi.org/10.1142/S0218348X21501826

    Article  MATH  Google Scholar 

  8. Anjum, N., He, J.H., Ain, Q.T., Tian, D.: Li-He’s modified homotopy perturbation method for doubly-clamped electrically actuated microbeams-based microelectromechanical system, Facta Universitatis. Mechanical Engineering, Series (2021). (https://doi.org/10.22190/FUME210112025A)

  9. Babolian, E., Vahidi, A.R., Azimzadeh, Z.: A comparison between Adomian’s decomposition method and the homotopy perturbation method for solving nonlinear differential equations. J. Appl. Sci. 12(8), 793–797 (2012)

  10. Chandru, M., Das, P., Ramos, H.: Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data. Math. Meth. Appl. Sci. 14, 5359–5387 (2018). https://doi.org/10.1002/mma.5067

    Article  MathSciNet  MATH  Google Scholar 

  11. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J Math. Anal. Appl. 265(2), 229–248 (2002)

    Article  MathSciNet  Google Scholar 

  12. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36(1), 31–52 (2004)

    Article  MathSciNet  Google Scholar 

  13. Das, P., Natesan, S.: Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems. Appl. Math. Comput. 249, 265–277 (2014)

    Article  MathSciNet  Google Scholar 

  14. Das, P.: Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems. J. Comput. Appl. Math. 290, 16–25 (2015)

    Article  MathSciNet  Google Scholar 

  15. Das, P., Mehrmann, V.: Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters. BIT Numer. 56(1), 51–76 (2016)

    Article  MathSciNet  Google Scholar 

  16. Das, P.: A higher order difference method for singularly perturbed parabolic partial differential equations. J. Differ. Equ. Appl. 243, 452–477 (2018)

    Article  MathSciNet  Google Scholar 

  17. Dubey, R.S., Goswami, P.: Analytical solution of the nonlinear diffusion equation. Eur. Phys. J. Plus 133(5), 183 (2018). https://doi.org/10.1016/j.cam.2020.113116

    Article  Google Scholar 

  18. Das, P., Rana, S., Ramos, H.: Homotopy perturbation method for solving Caputo-type fractional-order Volterra-Fredholm integro-differential equations. Comput. Math. Methods (2019). https://doi.org/10.1002/cmm4.1047

    Article  MathSciNet  Google Scholar 

  19. Das, P.: A posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh. Numer. Algorithms 81(2), 465–487 (2019)

    Article  MathSciNet  Google Scholar 

  20. Das, P., Aguiar, J.S.: Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter. J. Comput. Appl. Math. 354, 533–544 (2019)

    Article  MathSciNet  Google Scholar 

  21. Das, P., Rana, S., Ramos, H.: On the approximate solutions of a class of fractional order nonlinear Volterra integro-differential initial value problems and boundary value problems of first kind and their convergence analysis. J. Comput. Appl. Math. (2020). https://doi.org/10.1016/j.cam.2020.113116

    Article  MATH  Google Scholar 

  22. Das, P., Rana, S., Ramos, H.: A perturbation based approach for solving fractional order Volterra-Fredholm integro-differential equations and its convergence analysis. Int. J. Comput. Math. 97(10), 1994–2014 (2020)

    Article  MathSciNet  Google Scholar 

  23. Das, P., Rana, S., Aguiar, J.V.: Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature. Appl. Numer. Math. 148, 79–97 (2020). https://doi.org/10.1016/j.apnum.2019.08.028

    Article  MathSciNet  MATH  Google Scholar 

  24. Dehestani, H., Ordokhani, Y., Razzaghi, M.: Pseudo-operational matrix method for the solution of variable-order fractional partial integro-differential equations, Eng. Comput., pp. 1-16, (2020)

  25. Guo, J., Xu, D., Qiu, W.: A finite difference scheme for the nonlinear time-fractional partial integro-differential equation. Math. Meth. Appl. Sci. 43, 3392–3412 (2020)

    Article  MathSciNet  Google Scholar 

  26. Hussain, A.K., Rusli, N., Fadhel, F.S., Yahya, Z.R.: Solution of one-dimensional fractional order partial integro-differential equations using variational iteration method. AIP Publ. LLC 1775(1), 30–96 (2016)

    Google Scholar 

  27. Hamoud, A.A., Ghadle, K.P.: On the numerical solution of nonlinear Volterra-Fredholm integral equations by variational iteration method. Int. J. Adv. Sci. Tech. Res. 3, 45–51 (2016)

    Google Scholar 

  28. Hussain, A.K., Fadhel, F.S., Rusli, N., Yahya, Z.R.: On the existence and uniqueness of fractional order partial integro-differential equations. Far East J. Math. Sci. 102(1), 121–136 (2017)

    MATH  Google Scholar 

  29. Hamoud, A.A., Ghadle, K.P.: Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations. J. Math. Model. 6(1), 91–104 (2018)

    MathSciNet  MATH  Google Scholar 

  30. He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Engng. 178(3/4), 257–262 (1999)

    Article  MathSciNet  Google Scholar 

  31. He, J.H.: Non-perturbative methods for strongly nonlinear problems, Dissertation, de-Verlag im Internet GmbH, (2006)

  32. He, J.H.: A short review on analytical methods for a fully fourth-order nonlinear integral boundary value problem with fractal derivatives. Int. J Numer. Method H. (2020). https://doi.org/10.1108/HFF-01-2020-0060

    Article  Google Scholar 

  33. He, J.H., El-Dib, Y.O.: Homotopy perturbation method for Fangzhu oscillator. J. Math. Chem. 58, 2245–2253 (2020). https://doi.org/10.1007/s10910-020-01167-6

    Article  MathSciNet  MATH  Google Scholar 

  34. He, J.H., Moatimid, G.M., Mostapha, D.R.: Nonlinear instability of two streaming-superposed magnetic Reiner-Rivlin fluids by He-Laplace method. J. Electroanal. 895, 115388 (2021)

    Article  Google Scholar 

  35. Inc, M.: The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345(1), 476–484 (2008)

    Article  MathSciNet  Google Scholar 

  36. Jafari, H., Prasad, J.G., Goswami, P., Dubey, R.S.: Solution of the local fractional generalized KDV equation using homotopy analysis method. Fractals (2021). https://doi.org/10.1142/S0218348X2140014

    Article  MATH  Google Scholar 

  37. Kilicman, A., Shokhanda, R., Goswami, P.: On the solution of (n+1)-dimensional fractional M-Burgers equation. Alex. Eng. J. 60(1), 1165–1172 (2021). https://doi.org/10.1016/j.aej.2020.10.040

    Article  Google Scholar 

  38. Kumar, K., Podila, P.C., Das, P., Ramos, H.: A graded mesh refinement approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems. Math. Meth. Appl. Sci. (2021). https://doi.org/10.1002/mma.7358

    Article  MathSciNet  MATH  Google Scholar 

  39. Kumar, K., Podila, P.C., Das, P., Ramos, H.: A graded mesh refinement approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems. Math Meth. Appl. Sci. (2021). https://doi.org/10.1002/mma.7358

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, X.X., He, C.H.: Homotopy perturbation method coupled with the enhanced perturbation method. J. Low Freq. Noise V. A. 38(3–4), 1399–1403 (2019)

    Article  Google Scholar 

  41. Momani, S., Odibat, Z.: Analytical solution of a time fractional Navier Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177(2), 488–494 (2006)

    Article  MathSciNet  Google Scholar 

  42. Momani, S., Noor, M.A.: Numerical methods for fourth-order fractional integro-differential equations. Appl. Math. Comput. 182(1), 754–760 (2006)

    Article  MathSciNet  Google Scholar 

  43. Mirzaee, F., Samadyar, N.: On the numerical method for solving a system of nonlinear fractional ordinary differential equations arising in HIV infection of \(CD4 ^{+}\)T cells, Iran J. Sci. Tchnol, A, Transactions A: Science, 43(3), pp. 1127-1138, (2019)

  44. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  45. Al-Smadi, M., Gumah, G.: On the homotopy analysis method for fractional SEIR epidemic model. Res. J. Appl. Sci. Engrg. Technol. 7, 3809–3820 (2014)

    Article  Google Scholar 

  46. Shakti, D., Mohapatra, J., Das, P., Aguiar, J.V.: A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms. J. Comput. Appl. Math. (2020). https://doi.org/10.1016/j.cam.2020.113167

    Article  MATH  Google Scholar 

  47. Santra, S., Mohapatra, J.: Analysis of the L1 scheme for a time fractional parabolic-elliptic problem involving weak singularity. Math. Meth. Appl. Sci. 44, 1529–1541 (2021). https://doi.org/10.1002/mma.6850

    Article  MathSciNet  MATH  Google Scholar 

  48. Torrejon, R., Yong, J.: On a quasilinear wave equation with memory. Nonlinear Anal. 16(1), 61–78 (1991)

    Article  MathSciNet  Google Scholar 

  49. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220(2), 813–823 (2007)

    Article  MathSciNet  Google Scholar 

  50. Wang, Q.: Homotopy perturbation method for fractional KdV equation. Appl. Math. Comput. 190(2), 1795–1802 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mohapatra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, A., Santra, S. & Mohapatra, J. Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations. J. Appl. Math. Comput. 68, 2065–2082 (2022). https://doi.org/10.1007/s12190-021-01613-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01613-x

Keywords

Mathematics Subject Classification

Navigation