Skip to main content

Advertisement

Log in

Impact of environmental noises on the stability of a waterborne pathogen model

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A stochastic waterborne disease model is analyzed to reveal the effects of the white noise and telegraph noise. For this stochastic model, a critical quantity \(R_0^s\) is derived, which depends on not only model parameters but also environmental noises. If \(R_0^s>1\), then this model admits an ergodic stationary distribution. One of the most important contributions is the suitable Lyapunov function depending on the state of Markov chains is constructed. Theoretical results and numerical simulations provide a clear insight of the impact of environmental noises on the dynamical behavior of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baldursson, S., Karanis, P.: Waterborne transmission of protozoan parasites: review of worldwide outbreaksCan update 2004–2010. Water Res. 45(20), 6603–6614 (2011)

    Article  Google Scholar 

  2. Tien, J.H., Earn, D.J.: Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull. Math. Biol. 72, 1506–1533 (2010)

    Article  MathSciNet  Google Scholar 

  3. Wang, Y., Cao, J.: Global stability of a multiple infected compartments model for waterborne diseases. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3753–3765 (2014)

    Article  MathSciNet  Google Scholar 

  4. Zhou, X., Cui, J., Zhang, Z.: Global results for a cholera model with imperfect vaccination. J. Frankl. Inst. 349(3), 770–791 (2012)

    Article  MathSciNet  Google Scholar 

  5. Tian, X., Xu, R., Lin, J.: Mathematical analysis of a cholera infection model with vaccination strategy. Appl. Math. Comput. 361, 517–535 (2019)

    Article  MathSciNet  Google Scholar 

  6. Lafferty, K.D., Holt, R.D.: How should environmental stress affect the population dynamics of disease? Ecol. Lett. 6(7), 654–664 (2003)

    Article  Google Scholar 

  7. Sharma, S., Kumari, N.: Dynamics of a waterborne pathogen model under the influence of environmental pollution. Appl. Math. Comput. 346, 219–243 (2019)

    Article  MathSciNet  Google Scholar 

  8. Friedman, A.: Stochastic Differential Equations and their Applications. Academic Press, New York (1976)

    MATH  Google Scholar 

  9. Greenhalgh, D., Liang, Y., Mao, X.: Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching. Phys. A 462, 684–704 (2016)

    Article  MathSciNet  Google Scholar 

  10. Zhao, Y., Jiang, D.: The threshold of a stochastic SIS epidemic model with vaccination. Appl. Math. Comput. 243, 718–727 (2014)

    Article  MathSciNet  Google Scholar 

  11. Yuan, S., Wu, D., Lan, G., Wang, H.: Noise-induced transitions in a nonsmooth predator-prey model with stoichiometric constraints. B. Math. Biol. 82, 55 (2020)

    Article  Google Scholar 

  12. Yuan, Y., Allen, L.J.S.: Stochastic models for virus and immune system dynamics. Math. Biosci. 234, 84–94 (2011)

    Article  MathSciNet  Google Scholar 

  13. Yu, X., Yuan, S.: Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation. Discrete Cont. Dyn. B 25, 2373–2390 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Liu, M., Fan, M.: Permanence of stochastic LotkaCVolterra systems. J. Nonlinear Sci. 27, 425–452 (2017)

    Article  MathSciNet  Google Scholar 

  15. Hasminskii, R.: Stochastic Stability of Differential equations. Sijthoff & Noordhoff, Alphen aan den Rijn (1980)

    Book  Google Scholar 

  16. Wang, Y., Jiang, D., Hayat, T., Ahmad, B.: A stochastic HIV infection model with T-cell proliferation and CTL immune response. Appl. Math. Comput. 315, 477–493 (2017)

    Article  MathSciNet  Google Scholar 

  17. Cai, Y., Kang, Y., Wang, W.: A stochastic SIRS epidemic model with nonlinear incidence rate. Appl. Math. Comput. 305, 221–240 (2017)

    Article  MathSciNet  Google Scholar 

  18. Zhao, Y., Yuan, S., Zhang, T.: The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching. Commun. Nonlinear Sci. Numer. Simul. 37, 131–142 (2016)

    Article  MathSciNet  Google Scholar 

  19. Hove-Musekwa, S.D., Nyabadza, F., Chiyaka, C., Das, P., Tripathi, A., Mukandavire, Z.: Modelling and analysis of the effects of malnutrition in the spread of cholera. Math. Comput. Model. 53(9), 1583–1595 (2011)

    Article  MathSciNet  Google Scholar 

  20. Collins, O., Govinder, K.: Incorporating heterogeneity into the transmission dynamics of a waterborne disease model. J. Theor. Biol. 356, 133–143 (2014)

    Article  MathSciNet  Google Scholar 

  21. Kumari, N., Sharma, S.: Does water disinfectant play a supportive role in the spread of infectious disease? A mathematical study. Nat. Resour. Model. 29(2), 259–288 (2016)

    Article  MathSciNet  Google Scholar 

  22. Rudnicki, R.: Long-time behaviour of a stochastic preyC predator model. Stoch. Process. Appl. 108, 93–107 (2003)

    Article  Google Scholar 

  23. Ji, C., Jiang, D., Yang, Q., Shi, N.: Dynamics of amultigroup SIR epidemic model with stochastic perturbation. Automatica 48, 121–131 (2012)

    Article  Google Scholar 

  24. Liu, Q., Jiang, D., Hayat, T., Alsaedi, A.: Dynamical behavior of a stochastic epidemic model for cholera. J. Frankl. Inst. 356, 7486–7514 (2019)

    Article  MathSciNet  Google Scholar 

  25. Settati, A., Lahrouz, A.: Stationary distribution of stochastic population systems under regime switching. Appl. Math. Comput. 244, 235–243 (2014)

    Article  MathSciNet  Google Scholar 

  26. Mao, X., Yuan, C.: Stochastic Differential Equations With Markovian Switching. Imperial College Press, London (2006)

    Book  Google Scholar 

  27. Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems. SIAM J. Control Optim. 46, 1155–1179 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grant Nos. 11801566 , 11871473 ), the Fundamental Research Funds for the Central Universities of China (No. 19CX02059A ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

We introduce some results concerning the positive recurrence and stationary distribution. Let (X(t), r(t)) be the diffusion process described by the following equation:

$$\begin{aligned} \mathrm {d}X(t)=b(X(t),r(t))\mathrm {d}t+\sigma (X(t),r(t))\mathrm {d}B(t),\ \ X(0)=x_0,\ r(0)=r, \end{aligned}$$
(17)

where \(b(\cdot ,\cdot ):\mathbb {R}^n\times {\mathcal M}\rightarrow \mathbb {R}^n\), \(\sigma (\cdot ,\cdot ):\mathbb {R}^n\times {\mathcal M}\rightarrow \mathbb {R}^{n\times n}\), and \(D(x,k)=\sigma (x,k)\sigma ^T(x,k)=(d_{ij}(x,k))\). For each \(k\in {\mathcal M}\), let \(V(\cdot ,k)\) be any twice continuously differentiable function, the operator \({\mathcal L}\) can be defined by

$$\begin{aligned} {\mathcal L}V(x,k)=\sum _{i=1}^{n}b_i(x,k)\frac{\partial V(x,k)}{\partial x_i}+\frac{1}{2}\sum _{i,j=1}^nd_{ij}(x,k)\frac{\partial ^2V(x,k)}{\partial x_i\partial x_j}+\sum _{l=1}^{N}\gamma _{kl}V(x,l). \end{aligned}$$

Definition 1

[26] The process of \(X_t^x\) with \(X_0=x\) is recurrent with respect to U, if for any \(x\not \in U\), \(\mathbb {P}(\tau _u<\infty )=1\), where \(\tau _u\) is the hitting time of U for the process \(X_t^x\). The process \(X_t^x\) is said to be positive recurrent with respect to U if \(\mathbb {E}(\tau _u))<\infty \) any \(x\not \in U\).

From Theorems in [27] it follows the following lemma which gives a criterion for the ergodic stationary distribution of the solution (X(t), r(t)) to system (17):

Lemma 2

If the following conditions are satisfied:

  1. (A1)

    \(\gamma _{ij}>0\) for any \(i\ne j\);

  2. (A2)

    for each \(k\in {\mathcal M}\), \(D(x,k)=(d_{ij}(x,k))\) is symmetric and satisfies \(\lambda |\zeta |^2\le \langle D(x,k)\zeta ,\zeta \rangle \le \lambda ^{-1}|\zeta |^2\ \ \ \mathrm {for\ all}\ \zeta \in \mathbb {R}^n,\) with some constant \(\lambda \in (0,1]\) for all \(x\in \mathbb {R}^n\);

  3. (A3)

    there exists a nonempty open set U with compact closure, satisfying that, for each \(k\in {\mathcal M}\), there is a nonnegative function \(V(\cdot ,k):U^c\rightarrow \mathbb {R}\) such that \(V(\cdot ,k)\) is twice continuously differential and that for some \(\alpha >0\), \({\mathcal L}V(x,k)\le -\alpha ,\ \ (x,k)\in U^c\times \mathcal {M},\)

then the Markov process (X(t), r(t)) is positive recurrent and ergodic. That is to say, there exists a unique stationary distribution.

Lemma 3

[15] Assume that there is a bounded open domain \(U\subset \mathbb {R}^n\) with a regular boundary \(\Gamma \), which has the following properties:

  1. (A4)

    there is a positive number c such that \(\sum _{i,j=1}^{n}d_{ij}(x)\xi _i\xi _j\ge c|\xi |^2\) holds, for \(x\in U\) and \(\xi \in \mathbb {R}^n\);

  2. (A5)

    there is a nonnegative \(C^2\)-function V such that for some \(\alpha >0\), \({\mathcal L}V(x)\le -\alpha ,\ \ x\in U^c.\)

Then, the Markov process X(t) has a unique ergodic stationary distribution.

Appendix B

We verify \({\mathcal L}V(X_1,X_2,Y,B,k)\le -1, \ \ (X_1,X_2,Y,B,k)\in (\mathbb {R}_+^4\setminus U)\times {\mathcal M}.\)

  1. Case 1.

    When \((X_1,X_2,Y,B)\in U_1^c\), according to (8), we have

    $$\begin{aligned}{\begin{matrix} {\mathcal L}V\le &{}-M\left( \gamma +\alpha +d+\sum _{k=1}^{N}\pi _k\frac{\sigma _3^2(k)}{2}\right) (R_0^s-1) +M\left( a_2c_2+\frac{K_2\zeta }{\eta }\right) Y\\ &{}-\frac{(1-p)\Lambda }{X_1}-\frac{p\Lambda }{X_2}-\frac{\zeta Y}{B} +\check{\beta }(2+\omega \beta ')B+K_3\\ &{}+K_4-\frac{1}{2}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) \\ &{}\times \left( X_1^{\theta +1}+X_2^{\theta +1}+Y^{\theta +1}+\left( \frac{\alpha +d}{2\zeta }B\right) ^{\theta +1}\right) \\ \le &{}-\frac{(1-p)\Lambda }{X_1}+M\left( a_2c_2+\frac{K_2\zeta }{\eta }\right) Y +\check{\beta }(2+\omega \beta ')B+K_3+K_4\\ &{}-\frac{1}{4}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) \\ &{}\times \left( X_1^{\theta +1}+X_2^{\theta +1}+Y^{\theta +1}+\left( \frac{\alpha +d}{2\zeta }B\right) ^{\theta +1}\right) \\ \le &{}-\frac{(1-p)\Lambda }{\varepsilon }+K_6\\ \le &{}-1. \end{matrix}} \end{aligned}$$
  2. Case 2.

    When \((X_1,X_2,Y,B)\in U_2^c\), we have

    $$\begin{aligned} {\mathcal L}V\le&-M\left( \gamma +\alpha +d+\sum _{k=1}^{N}\pi _k\frac{\sigma _3^2(k)}{2}\right) (R_0^s-1) +M\left( a_2c_2+\frac{K_2\zeta }{\eta }\right) Y\\&-\frac{(1-p)\Lambda }{X_1}-\frac{p\Lambda }{X_2}-\frac{\zeta Y}{B} +\check{\beta }(2+\omega \beta ')B+K_3\\&+K_4-\frac{1}{2}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) \\&\times \left( X_1^{\theta +1}+X_2^{\theta +1}+Y^{\theta +1}+\left( \frac{\alpha +d}{2\zeta }B\right) ^{\theta +1}\right) \\ \le&-\frac{p\Lambda }{X_2}+M\left( a_2c_2+\frac{K_2\zeta }{\eta }\right) Y +\check{\beta }(2+\omega \beta ')B+K_3+K_4\\&-\frac{1}{4}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) \\&\times \left( X_1^{\theta +1}+X_2^{\theta +1}+Y^{\theta +1}+\left( \frac{\alpha +d}{2\zeta }B\right) ^{\theta +1}\right) \\ \le&-\frac{p\Lambda }{\varepsilon }+K_6. \end{aligned}$$

    From (9) it follows that

    $$\begin{aligned} {\mathcal L}V(X_1,X_2,Y,B,k)\le -1,\ \ (X_1,X_2,Y,B,k)\in U_2^c\times {\mathcal M}. \end{aligned}$$
  3. Case 3.

    When \((X_1,X_2,Y,B)\in U_3^c\),

    $$\begin{aligned}{\begin{matrix} {\mathcal L}V\le &{}-M\left( \gamma +\alpha +d+\sum _{k=1}^{N}\pi _k\frac{\sigma _3^2(k)}{2}\right) (R_0^s-1) +M\left( a_2c_2+\frac{K_2\zeta }{\eta }\right) Y\\ &{}-\frac{(1-p)\Lambda }{X_1}-\frac{p\Lambda }{X_2}-\frac{\zeta Y}{B} +\check{\beta }(2+\omega \beta ')B+K_3\\ &{}+K_4-\frac{1}{2}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) \\ &{}\times \left( X_1^{\theta +1}+X_2^{\theta +1}+Y^{\theta +1}+\left( \frac{\alpha +d}{2\zeta }B\right) ^{\theta +1}\right) \\ \le &{}-M\left( \gamma +\alpha +d+\sum _{k=1}^{N}\pi _k\frac{\sigma _3^2(k)}{2}\right) (R_0^s-1)+M\left( a_2c_2+\frac{K_2\zeta }{\eta }\right) Y\\ &{} +\check{\beta }(2+\omega \beta ')B+K_3+K_4\\ &{}-\frac{1}{2}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) \\ &{}\times \left( X_1^{\theta +1}+X_2^{\theta +1}+Y^{\theta +1}+\left( \frac{\alpha +d}{2\zeta }B\right) ^{\theta +1}\right) \\ \le &{}-M\left( \gamma +\alpha +d+\sum _{k=1}^{N}\pi _k\frac{\sigma _3^2(k)}{2}\right) (R_0^s-1)+M\left( a_2c_2+\frac{K_2\zeta }{\eta }\right) \varepsilon +K_5. \end{matrix}} \end{aligned}$$

    According to (10), we deduce that \({\mathcal L}V\le -1\) for any \((X_1,X_2,Y,B,k)\in U_3^c\times {\mathcal M}\).

  4. Case 4.

    When \((X_1,X_2,Y,B)\in U_4^c\), from (11) we can also get that

    $$\begin{aligned} {\mathcal L}V \le&-\frac{\zeta Y}{B}+M\left( a_2c_2+\frac{K_2\zeta }{\eta }\right) Y +\check{\beta }(2+\omega \beta ')B+K_3+K_4\\&-\frac{1}{4}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) \\&\times \left( X_1^{\theta +1}+X_2^{\theta +1}+Y^{\theta +1}+\left( \frac{\alpha +d}{2\zeta }B\right) ^{\theta +1}\right) \\ \le&-\frac{\zeta }{\varepsilon }+K_6\\ \le&-1. \end{aligned}$$
  5. Case 5.

    When \((X_1,X_2,Y,B)\in U_5^c\),

    $$\begin{aligned}{\begin{matrix} {\mathcal L}V\le &{}-M\left( \gamma +\alpha +d+\sum _{k=1}^{N}\pi _k\frac{\sigma _3^2(k)}{2}\right) (R_0^s-1) +M\left( a_2c_2+\frac{K_2\zeta }{\eta }\right) Y\\ &{}-\frac{(1-p)\Lambda }{X_1}-\frac{p\Lambda }{X_2}-\frac{\zeta Y}{B} +\check{\beta }(2+\omega \beta ')B+K_3\\ &{}+K_4-\frac{1}{2}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) \\ &{}\times \left( X_1^{\theta +1}+X_2^{\theta +1}+Y^{\theta +1}+\left( \frac{\alpha +d}{2\zeta }B\right) ^{\theta +1}\right) \\ \le &{}-\frac{1}{4}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) X_1^{\theta +1}+M\left( a_2c_2+\frac{K_2\zeta }{\eta }\right) Y\\ &{}+K_3+K_4-\frac{1}{4}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) \\ &{}\times \left( X_1^{\theta +1}+X_2^{\theta +1}+Y^{\theta +1}+\left( \frac{\alpha +d}{2\zeta }B\right) ^{\theta +1}\right) \\ \le &{}-\frac{1}{4}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) \frac{1}{\varepsilon ^{\theta +1}}+K_6. \end{matrix}} \end{aligned}$$

    From (12) it follows that

    $$\begin{aligned} {\mathcal L}V(X_1,X_2,Y,B,k)\le -1,\ \ (X_1,X_2,Y,B,k)\in U_5^c\times {\mathcal M}. \end{aligned}$$

    If \((X_1,X_2,Y,B)\in U_6^c\) and \((X_1,X_2,Y,B)\in U_7^c\), using the similar calculation as that in Case 5, from (12) we also obtain that

    $$\begin{aligned} {\mathcal L}V(X_1,X_2,Y,B,k)\le -1,\ \ (X_1,X_2,Y,B,k)\in (U_6^c\cup U_7^c)\times {\mathcal M}. \end{aligned}$$
  6. Case 6.

    When \((X_1,X_2,Y,B)\in U_8^c\), we have

    $$\begin{aligned} {\mathcal L}V\le&-M\left( \gamma +\alpha +d+\sum _{k=1}^{N}\pi _k\frac{\sigma _3^2(k)}{2}\right) (R_0^s-1) +M\left( a_2c_2+\frac{K_2\zeta }{\eta }\right) Y\\&-\frac{(1-p)\Lambda }{X_1}-\frac{p\Lambda }{X_2}-\frac{\zeta Y}{B} +\check{\beta }(2+\omega \beta ')B+K_3\\&+K_4-\frac{1}{2}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) \\&\times \left( X_1^{\theta +1}+X_2^{\theta +1}+Y^{\theta +1}+\left( \frac{\alpha +d}{2\zeta }B\right) ^{\theta +1}\right) \\ \le&-\frac{1}{4}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) \left( \frac{\alpha +d}{2\zeta }B\right) ^{\theta +1}\\&+M\left( a_2c_2+\frac{K_2\zeta }{\eta }\right) Y\\&+K_3+K_4-\frac{1}{4}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) \\&\times \left( X_1^{\theta +1}+X_2^{\theta +1}+Y^{\theta +1}+\left( \frac{\alpha +d}{2\zeta }B\right) ^{\theta +1}\right) \\ \le&-\frac{1}{4}\left( \min \{d,\frac{\alpha +d}{2},\eta \}-\frac{\theta }{2}\max _{i=1,2,3,4}\{\check{\sigma }_i^2\}\right) \left( \frac{\alpha +d}{2\zeta \varepsilon ^2}\right) ^{\theta +1}+K_6. \end{aligned}$$

    In view of (13), we obtain that \({\mathcal L}V\le -1\) for any \((X_1,X_2,Y,B,k)\in U_8^c\times {\mathcal M}\).

Obviously, from above analysis it follows that \({\mathcal L}V(X_1,X_2,Y,B,k)\le -1, \ \ (X_1, X_2,Y,B,k)\in (\mathbb {R}_+^4\setminus U)\times {\mathcal M}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Jiang, D. Impact of environmental noises on the stability of a waterborne pathogen model. J. Appl. Math. Comput. 68, 2039–2063 (2022). https://doi.org/10.1007/s12190-021-01606-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01606-w

Keywords

Mathematics Subject Classification

Navigation