Skip to main content
Log in

On \({\mathbb {Z}}_{2}{\mathbb {Z}}_{4}[\xi ]\)-skew cyclic codes

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

A Correction to this article was published on 12 July 2021

This article has been updated

Abstract

\({\mathbb {Z}}_2{\mathbb {Z}}_{4}\)-additive codes have been defined as a subgroup of \({\mathbb {Z}}_2^{r}\times {\mathbb {Z}}_4^{s}\) in [6] where \({\mathbb {Z}}_2\), \({\mathbb {Z}}_{4}\) are the rings of integers modulo 2 and 4 respectively and r and s are positive integers. In this study, we define a family of codes over the set \({\mathbb {Z}}_2[{\bar{\xi }}]^{r}\times {\mathbb {Z}}_4[\xi ]^{s}\) where \(\xi \) is a root of a monic basic primitive polynomial in \({\mathbb {Z}}_{4}[x]\). We give the standard form of the generator and parity-check matrices of codes over \({\mathbb {Z}}_2[{\bar{\xi }}]^{r}\times {\mathbb {Z}}_4[\xi ]^{s}\) and also we introduce skew cyclic codes and their spanning sets. Moreover, we study the Gray images of codes over both \({{\mathbb {Z}}}_4[\xi ]\) and \({{\mathbb {Z}}_{2}[{\bar{\xi }}]^r\times {{\mathbb {Z}}_{4}[\xi ]^s}}\) with respect to homogeneous weight and give the necessary and sufficient condition for their Gray images to be a linear code. We further present some examples of optimal codes which are actually Gray images of skew cyclic codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Abualrub, T., Ghrayeb, A., Aydin, N., Siap, I.: On the construction of skew quasi-cyclic codes. IEEE Trans. Inform. Theory 56(5), 2080–2090 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abualrub, T., Siap, I., Aydin, N.: \({\mathbb{Z}}_{2}{\mathbb{Z}}_{4}\)-additive cyclic codes. IEEE Trans. Inform. Theory 60(3), 1508–1514 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aydogdu, I., Siap, I.: The Structure of \({\mathbb{Z}}_{2}{\mathbb{Z}}_{2^{s}}\)-Additive Codes: Bounds on the minimum distance. Appl. Math. Inf. Sci. (AMIS) 7(6), 2271–2278 (2013)

    Article  Google Scholar 

  4. Aydogdu, I., Siap, I.: On \({\mathbb{Z}}_{p^{r}}{\mathbb{Z}}_{p^{s}}\)-additive codes. Linear Multilinear Algebra 63(10), 2089–2102 (2015)

    Article  MathSciNet  Google Scholar 

  5. Aydogdu, I., Abualrub, T., Siap, I.: On \({\mathbb{Z}}_{2}{\mathbb{Z}}_{2}[u]-\)additive codes. Int. J. Comput. Math. 92(9), 1806–1814 (2015)

    Article  MathSciNet  Google Scholar 

  6. Borges, J., Fernández-Córdoba, C., Pujol, J., Rifà, J., Villanueva, M.: \({\mathbb{Z}}_{2}{\mathbb{Z}}_{4}\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54(2), 167–179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boucher, D., Geiselmann, W., Ulmer, F.: Skew cyclic codes. Appl. Algebr. Eng. Comm. 18, 379–389 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boucher, D., Solé, P., Ulmer, F.: Skew constacyclic codes over Galois rings. Adv. Math. Commun. 2(3), 273–292 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carlet, C.: \({\mathbb{Z}}_{2^k}\)-linear codes. IEEE Trans. Inform. Theory 44, 1543–1547 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantinescu, I., Heise, W.: A metric for codes over residue class rings of integers. Problemy Peredachi Informatsii 3, 22–28 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Grassl, M.: Table of Bounds on Linear Codes [Online], Available: http://www.codetables.de/, (1995)

  12. Greferath, M., Schmidt, S.E.: Gray isometries for finite chain rings and a nonlinear ternary \( (36, 3^{12}, 15) \) code. IEEE Trans. Inform. Theory 45(7), 2522–2524 (1999)

    Article  MathSciNet  Google Scholar 

  13. Greferath, M., Schmidt, S.E.: Finite-Ring Combinatorics and MacWilliams’ Equivalence Theorem. J. Combin. Theory Ser A 92, 17–28 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jitman, S., Ling, S., Udomkavanich, P.: Skew constacyclic codes over finite chain rings. Adv. Math. Commun. 6(1), 39–63 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Melakhessou, A., Aydin, N., Hebbache, Z., Guenda, K.: \({\mathbb{Z}}_q\left({\mathbb{Z}}_q+u{\mathbb{Z}}_q\right)\)-linear skew constacyclic codes. J. Algebra Comb. Discret. Struct. Appl. 7(1), 85–101 (2020)

    MATH  Google Scholar 

  16. Siap, I., Abualrub, T., Aydin, N., Seneviratne, P.: Skew cyclic codes of arbitrary length. Int. J. Inform. Coding Theory 2, 10–20 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wan, Z.-X.: Quaternary Codes. World Scientific, Singapore (1997)

    Book  MATH  Google Scholar 

  18. Yao, T., Shi, M., Solé, P.: Skew cyclic codes over \(F_q+uF_q+vF_q+uvF_q\). J. Algebra Comb. Discret. Struct. Appl. 2(3), 163–168 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the anonymous reviewers for their valuable remarks that improved the presentation the paper. The authors also would like to thank the handling editor of the journal for the time spent during the whole process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Aydogdu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gursoy, F., Aydogdu, I. On \({\mathbb {Z}}_{2}{\mathbb {Z}}_{4}[\xi ]\)-skew cyclic codes. J. Appl. Math. Comput. 68, 1613–1633 (2022). https://doi.org/10.1007/s12190-021-01580-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01580-3

Keywords

Mathematics Subject Classifications

Navigation