Skip to main content

Advertisement

Log in

Transmission dynamics of epidemic spread and outbreak of Ebola in West Africa: fuzzy modeling and simulation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, an attempt is made to understand the transmission dynamics of Ebola virus disease (EVD) incorporating fuzziness in all biological parameters due to its natural variability. To characterize the transmission trajectories of Ebola outbreak, we propose and analyze two SEIR and SEIRHD type transmission models. Using triangular fuzzy numbers for the imprecise parameters, we first study the existence of the equilibria and their stability. Both of the model have two equilibria, namely the disease-free and endemic. Stability of the disease-free and endemic equilibria is related with basic reproduction number that has been calculated from next generation matrix. Stability analysis of the system shows that the disease free equilibrium is locally as well as globally asymptotically stable when the basic reproduction number is less than unity. Under some additional conditions, the model system becomes locally asymptotically stable at unique endemic equilibrium when basic reproduction number is greater than unity. Finally, we perform some numerical experiments to justify the theoretical estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Similar type of concepts have already been used in [31].

References

  1. Agusto, F.B.: Mathematical model of Ebola transmission dynamics with relapse and reinfection. Math. Biosci. 283, 48–59 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Althaus, C.L., Low, N., Musa, E.O., Shuaib, F., Gsteiger, S.: Ebola virus disease outbreak in Nigeria: transmission dynamics and rapid control. Epidemics 11, 80–84 (2015)

    Article  Google Scholar 

  3. Barro, S., Marin, R.: Fuzzy Logic in Medicine. Physica, heidelberg (2002)

    Book  MATH  Google Scholar 

  4. Barros, L.C., Bassanezi, R.C., Leite, M.B.F.: The \(SI\) epidemiological models with a fuzzy transmission parameter. Comput. Math. Appl. 45, 1619–1628 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barros, L.C., Tonelli, P.: About fuzzy dynamical systems: theory and applications, Ph.D thesis of the Institute of Mathematics, Statistics and Computer Science of University of Campinas, SaĂo Paulo, Brazil (1997)

  6. Bassanezi, R.C., Barros, L.C.: A simple model of life expectancy with subjective parameters. Kybernets 24, 91–98 (1995)

    Google Scholar 

  7. Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1, 361–404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Centers for Disease Control and Prevention. Questions and answers: estimating the future number of cases in the Ebola epidemic -Liberia and Sierra Leone, 2014–2015. http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/qa-mmwr-estimating-future-cases.html (2014). Accessed 10 Jan 2016

  9. Centers for Disease Control and Prevention. Ebola virus disease. http://www.cdc.gov/vhf/ebola/treatment/index.html (2015). Accessed 28 Dec 2015

  10. Chowell, G., Nishiura, H.: Transmission dynamics and control of Ebola virus disease: a review. BMC Med. 12, 1–16 (2014)

    Article  Google Scholar 

  11. Coltart, C.E., Lindsey, B., Ghinai, I., Johnson, A.M., Heymann, D.L.: The Ebola outbreak, 2013–2016: old lessons for new epidemics. Philos. Trans. R. Soc. B 372, 20160297 (2017)

    Article  Google Scholar 

  12. Das, A., Pal, M.: A mathematical study of an imprecise \(SIR\) epidemic model with treatment control. J. Appl. Math. Comput. 56, 477–500 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Datta, D.P.: The golden mean, scale free extension of real number system, fuzzy sets and \(\frac{1}{f}\) spectrum in physics and biology. Chaos Solitons Fractals 17, 781–788 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dia, P., Constantine, P., Kalmbach, K., Jones, E., Pankavich, S.: A modified \(SEIR\) model for the spread of Ebola in Western Africa and metrics for resource allocation. Appl. Math. Comput. 324, 141–155 (2018)

    MathSciNet  Google Scholar 

  15. Dixon, M.G., Schafer, I.J., et al.: Ebola viral disease outbreak in West Africa. MMWR Morb. Mortal. Wkly. Rep. 63, 548–551 (2014)

    Google Scholar 

  16. D’Silva, J.P., Eisenberg, M.C.: Modeling spatial invasion of Ebola in West Africa. J. Theor. Biol. 428, 65–75 (2017)

    Article  MATH  Google Scholar 

  17. Du Toit, A.: Ebola virus in West Africa. Nat. Rev. Microbiol. 12, 312 (2014)

    Article  Google Scholar 

  18. EI Naschie, M.S.: On a fuzzy Kähler manifold which is consistent with the two slit experiment. Int. J. Nonlinear Sci. Numer. Simul. 7, 95–98 (2005)

    Google Scholar 

  19. EI Naschie, M.S.: From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold. Chaos Solitons Fractals 25, 969–977 (2005)

    Article  MATH  Google Scholar 

  20. Farahi, M.H., Barati, S.: Fuzzy time-delay dynamical systems. J. Math. Comput. Sci. 2, 44–53 (2011)

    Article  Google Scholar 

  21. Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1977)

    Book  MATH  Google Scholar 

  22. Hanss, M.: Applied Fuzzy Arithmetic: An Introduction with Engineering Applications. Springer, Berlin (2005)

    MATH  Google Scholar 

  23. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey (1995)

    MATH  Google Scholar 

  24. Li, L.: Transmission dynamics of Ebola virus disease with human mobility in Sierra Leone. Chaos, Solitons and Fractals 104, 575–579 (2017)

    Article  MATH  Google Scholar 

  25. Martin, R.H.: Logarithmic norms and projections applied to linear differential systems. J. Math. Anal. Appl. 45, 432–454 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. Massad, E., Ortega, N.R.S., Barros, L.C., Struchiner, C.J.: Fuzzy Logic in Action: Applications in Epidemiology and Beyond, Studied in Fuzziness and Soft Computing. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  27. Mishra, B.K., Pandey, S.K.: Fuzzy epidemic model for the transmission of worms in computer network. Nonlinear Anal. Real World Appl. 11, 4335–4341 (2010)

    Article  MATH  Google Scholar 

  28. Njankou, S.D.D., Nyabadza, F.: An optimal control model for Ebola virus disease. J. Biol. Syst. 24, 1–21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ortega, N.R.S., Sallum, P.C., Massad, E.: Fuzzy dynamical systems in epidemic modeling. Kybernetes 29, 201–218 (2000)

    Article  MATH  Google Scholar 

  30. Pal, D., Mahaptra, G.S., Samanta, G.P.: Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model. Math. Biosci. 241, 181–187 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Panja, P., Mondal, S.K., Chattopadhyay, J.: Dynamical study in fuzzy threshold dynamics of a Cholera epidemic model. Fuzzy Inf. Eng. 9, 381–401 (2017)

    Article  MathSciNet  Google Scholar 

  32. Puri, M., Ralescu, D.: Differentials of fuzzy functions. J. Math. Anal. Appl. 91, 552–558 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rachab, A., Torres, D.F.M.: Mathematical modeling, simulation and optimal control of the \(2014\) Ebola outbreak in West Africa, Discrete Dynamics in Nature and Society, https://doi.org/10.1155/2015/842792

  34. Richards, P., Amara, J., Ferme, M., Mokuwa, E., Koroma, P., Sheriff, I., Suluku, R., Voors, M.: Social pathways for Ebola virus disease in rural Sierra Leone and some implications for containment. PLoS Negl. Trop. Dis. (2015). https://doi.org/10.1371/journal.pntd.0003567

  35. Rivers, C., Lofgren, E., Marathe, M., Eubank, S., Lewis, B.: Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia. PLoS Curr. 6, 1–24 (2014)

    Google Scholar 

  36. Roy, P., Upadhyay, R.K.: Spatiotemporal transmission dynamics of recent Ebola outbreak in Sierra Leone, West Africa: impact of control measures. J. Biol. Syst. 25, 1–29 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sadhukhan, D., Sahoo, L.N., Mondal, B., Maitri, M.: Food chain model with optimal harvesting in fuzzy environment. J. Appl. Math. Comput. 34, 1–18 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Seikkala, S.: On the fuzzy initial value problem. Fuzzy Sets Syst. 24, 309–330 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sugeno, M.: Theory of fuzzy integrals and its applications, Doctoral Thesis, Tokyo Institute of Technology (1974)

  40. Upadhyay, R.K., Roy, P.: Deciphering dynamics of recent epidemic spread and outbreak in West Africa: the case of Ebola virus. Int. J. Bifurc. Chaos 26, 1–25 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Verma, R., Tiwari, S.P., Upadhyay, R.K.: Fuzzy modeling for the spread of influemza virus and its possible control. Comput. Ecol. Softw. 8, 32–45 (2018)

    Google Scholar 

  43. Webb, G., Browne, C., Huo, X., Seydi, O., Seydi, M., Magal, P.: A model of the \(2014\) Ebola epidemic in West Africa with contact tracing. In: PLOS Currents Outbreaks, 1st edn. (2015). https://doi.org/10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a

  44. Weitzand, J., Dushoff, J.: Modeling post-death transmission of Ebola: challenges for inference and opportunities for control. Sci. Rep. 5, 8751 (2015)

    Article  Google Scholar 

  45. World Health Organization. Ebola situation report-29 April 2015. http://apps.who.int/ebola/current-situation/ebola-situation-report-29-april-2015 (2015). Accessed 09 Jan 2016

Download references

Acknowledgements

The first author acknowledge with thanks the support received through a research grant, provided by the Council of Scientific and Industrial Research (CSIR) (Grant No. 09/085(0113)/2015-EMR-1), New Delhi, under which this work has been carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R., Tiwari, S.P. & Upadhyay, R.K. Transmission dynamics of epidemic spread and outbreak of Ebola in West Africa: fuzzy modeling and simulation. J. Appl. Math. Comput. 60, 637–671 (2019). https://doi.org/10.1007/s12190-018-01231-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-01231-0

Keywords

Mathematics Subject Classifications

Navigation