Skip to main content
Log in

A second-order finite element variational multiscale scheme for the fully discrete unsteady Navier–Stokes equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this report, we present and study a fully discrete finite element variational multiscale scheme for the unsteady incompressible Navier–Stokes equations where high Reynolds numbers are allowed. The scheme uses conforming finite element pairs for spatial discretization and a three-point difference formula for temporal discretization which is of second-order, where a stabilization term based on two local Gauss integrations is employed to stabilize the numerical scheme. We prove stability of the scheme, derive a priori error estimates for the fully discrete solution, and finally, give some numerical results to verify the theoretical predictions and demonstrate the effectiveness of the proposed numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin Heidelberg (1986)

    Book  MATH  Google Scholar 

  2. Glowinski, R.: Finite element methods for incompressible viscous flow. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Numerical Methods for Fluids (Part 3), vol. 9. Elsevier Science Publisher, Amsterdam (2003)

    Google Scholar 

  3. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  4. Zienkiewicz, O.C., Taylor, R.C., Nietharasu, P.: The Finite Element Method for Fluid Dynamics, 6th edn. Butterworth-Heinemann, Burlington (2005)

    Google Scholar 

  5. Feng, X.L., He, Y.N., Huang, P.Z.: A stabilized implicit fractional-step method for the time-dependent Navier–Stokes equations using equal-order pairs. J. Math. Anal. Appl. 392(2), 209–224 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. He, Y.N.: Two-level method based on finite element and Crank–Nicolson extrapolation for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 41(4), 1263–1285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. He, Y.N., Liu, K.M.: A multilevel finite element method in space-time for the Navier–Stokes problem. Numer. Methods Partial Differ. Equ. 21(6), 1052–1078 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, J., Chen, Z.X.: A new stabilized finite volume method for the stationary Stokes equations. Adv. Comput. Math. 30, 141–152 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wen, G.B., Chen, Z.B.: Unsteady/steady numerical simulation of three-dimensional incompressible Navier–Stokes equations on artificial compressibility. Appl. Math. Mech. (English Edition) 25(1), 59–77 (2004)

    Article  MATH  Google Scholar 

  10. Layton, W., Lee, H., Peterson, J.: A defect-correction method for the incompressible Navier–Stokes equations. Appl. Math. Comput. 129, 1–19 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Wang, K.: A new defect correction method for the Navier–Stokes equations at high Reynolds numbers. Appl. Math. Comput. 11(216), 3252–3264 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Liu, Q.F., Hou, Y.R.: A two-level defect-correction method for Navier–Stokes equations. B. Aust. Math. Soc. 81, 442–454 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaya, S., Layton, W., Riviere, B.: Subgrid stabilized defect correction methods for the Navier–Stokes equations. SIAM. Numer. Anal. 44, 1639–1654 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guermond, J.-L., Marra, A., Quartapelle, L.: Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers. Comput. Methods Appl. Mech. Eng. 195, 5857–5876 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Galvin, K.J.: New subgrid artificial viscosity Galerkin methods for the Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 200, 242–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, Y., He, Y.N.: Assessment of subgrid-scale models for the incompressible Navier–Stokes equations. J. Comput. Appl. Math. 234, 593–604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shang, Y.Q.: A two-level subgrid stabilized Oseen iterative method for the steady Navier–Stokes equations. J. Comput. Phys. 233, 210–226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hughes, T., Mazzei, L., Jansen, K.: Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3, 47–59 (2000)

    Article  MATH  Google Scholar 

  19. John, V., Kaya, S.: A finite element variational multiscale method for the Navier–Stokes equations. SIAM J. Sci. Comput. 26, 1485–1503 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, J., He, Y.N.: A stabilized finite element method based on two local Gauss integrations for the Stokes equations. J. Comput. Appl. Math. 214, 58–65 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, Y.N., Li, J.: A stabilized finite element method based on local polynomial pressure projection for the stationary Navier–Stokes equations. Appl. Numer. Math. 58, 1503–1514 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zheng, H.B., Hou, Y.R., Shi, F., Song, L.N.: A finite element variational multiscale method for incompressible flows based on two local Gauss integrations. J. Comput. Phys. 228, 5961–5977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zheng, H.B., Hou, Y.R., Shi, F.: Adaptive finite element variational multiscale method for incompressible flows based on two local Gauss integrations. J. Comput. Phys. 229, 7030–7041 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shi, F., Zheng, H.B., Yu, J., Li, Y.: On the convergence of variational multiscale methods based on Newton’s iteration for the incompressible flows. Appl. Math. Model. 38, 5726–5742 (2014)

    Article  MathSciNet  Google Scholar 

  25. Li, Y., Mei, L.Q., Li, Y., Zhao, K.: A two-level variational multiscale method for incompressible flows based on two local Gauss integrations. Numer. Methods Partial Differ. Equ. 29, 1986–2003 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Xie, C., Zheng, H.B.: A parallel variational multiscle method for incompressible flows based on the partition of unity. Int. J. Numer. Anal. Model. 11(4), 854–865 (2014)

    MathSciNet  Google Scholar 

  27. Shang, Y.Q.: A parallel two-level finite element variational multiscale method for the Navier–Stokes equations. Nonlinear Anal. 84, 103–116 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shang, Y.Q., Qin, J.: A finite element variational multiscale method based on two-grid discretization for the steady incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 300, 182–198 (2016)

    Article  MathSciNet  Google Scholar 

  29. Shang, Y.Q., Qin, J.: Parallel finite element variational multiscale algorithms for incompressible flow at high Reynolds numbers. Appl. Numer. Math. 117, 1–21 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jiang Y, Mei LQ, Wei HM, Tian WJ, Ge JT: A finite element variational multiscale method based on two local Gauss integrations for stationary conduction–convection problems. Math. Probl. Eng. article ID 747391 (2012)

  31. Shang, Y.Q.: Error analysis of a fully discrete finite element variational multiscale method for time-dependent incompressible Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 29(6), 2025–2046 (2013)

    MathSciNet  MATH  Google Scholar 

  32. He, Y.N., Sun, W.W.: Stability and convergence of the Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 45(6), 837–869 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. He, Y.N.: The Euler implicit/explicit scheme for the 2D time-dependent Navier–Stokes equations with smooth or non-smooth initial data. Math. Comp. 77, 2097–2124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  35. Adams, R.: Sobolev Spaces. Academic Press Inc, New York (1975)

    MATH  Google Scholar 

  36. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem I: regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hood, P., Taylor, C.: A numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fortin, M.: Calcul Num\(\acute{e}\)rique des Ecoulements Fluides de Bingham et des Fluides Newtoniens Incompressible Par desm\(\acute{e}\)thodes D’el\(\acute{e}\)ments Finis. Doctoral thesis (1972)

  39. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numérique 7(R–3), 33–76 (1973)

    MathSciNet  MATH  Google Scholar 

  40. Mansfield, L.: Finite element subspaces with optimal rates of convergence for stationary Stokes problem. RAIRO Anal. Numérique 16, 49–66 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  41. Case, M., Ervin, V., Linke, A., Rebholz, L.: A connection between Scott–Vogelius elements and grad-div stabilized Taylor–Hood FE approximations of the Navier–Stokes equations. SIAM J. Numer. Anal. 49(4), 1461–1481 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shan, L., Hou, Y.R., Zheng, H.B.: Variational mulstiscale method based on the Crank–Nicolson extrapolation scheme for the nonstationary Navier–Stokes equations. Int. J. Comput. Math. 89, 2198–2223 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqiang Shang.

Additional information

This work was supported by the Natural Science Foundation of China (No. 11361016) and the Basic and Frontier Research Program of Chongqing Municipality, China (No. cstc2016jcyjA0348).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Shang, Y. A second-order finite element variational multiscale scheme for the fully discrete unsteady Navier–Stokes equations. J. Appl. Math. Comput. 58, 95–110 (2018). https://doi.org/10.1007/s12190-017-1135-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-017-1135-y

Keywords

Mathematics Subject Classification

Navigation