Skip to main content
Log in

Optimal quota-share and stop-loss reinsurance from the perspectives of insurer and reinsurer

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Reinsurance plays a vital role in the insurance activities. The insurer and the reinsurer, which have conflicting interests, compose the two parties of a reinsurance contract. In this paper, we extend the results achieved by Tan et al. (N Am Actuar J 13(4):459–482, 2009) to the case in which the perspectives of both the insurer and the reinsurer are considered. We study the optimal quota-share and stop-loss reinsurance models by minimizing the convex combination of the VaR risk measures of the insurer’s cost and the reinsurer’s cost. Furthermore, as many as 16 reinsurance premium principles are investigated. The results show that optimal quota-share and stop-loss reinsurance may or may not exist depending on the chosen principles. Moreover, we establish the sufficient and necessary conditions for the existence of the nontrivial optimal reinsurance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the quota-share reinsurance, the optimal quota-share coefficient is nontrivial if it lies on the open interval (0, 1).

  2. In the stop-loss treaty, the trivial optimal reinsurance implies that either \(d^{*}=0\) or \(d^{*} \rightarrow \infty \).

  3. In the stop-loss treaty, the nontrivial optimal reinsurance implies that \(d^{*}\) is a real number in the open interval \((0, \infty )\).

References

  1. Arrow, K.J.: Uncertainty and the welfare economics of medical care. Am. Econ. Rev. 53(5), 941–973 (1963)

    Google Scholar 

  2. Balbs, A., Balbs, B., Heras, A.: Optimal reinsurance with general risk measures. Insur. Math. Econ. 44(3), 374–384 (2009)

    Article  MathSciNet  Google Scholar 

  3. Borch, K.: An attempt to determine the optimum amount of stop loss reinsurance. In: Transactions of the 16th International Congress of Actuaries, pp. 597-610 (1960)

  4. Borch, K.: The optimal reinsurance treaties. ASTIN Bull. 5(2), 293–297 (1969)

    Article  Google Scholar 

  5. Cai, J., Fang, Y., Li, Z.: Optimal reciprocal reinsurance treaties under the joint survival probability and the joint profitable probability. J. Risk Insur. 80(1), 145–168 (2013)

    Article  Google Scholar 

  6. Cai, J., Lemieux, C., Liu, F.D.: Optimal reinsurance from the perspectives of both an insurer and a reinsurer. ASTIN Bull. 46(3), 815–849 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cai, J., Tan, K.S.: Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures. ASTIN Bull. 37(1), 93–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, J., Tan, K.S., Weng, C., Zhang, Y.: Optimal reinsurance under VaR and CTE risk measures. Insur. Math. Econ. 43(1), 185–196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chi, Y.C.: Optimal reinsurance under variance related premium principles. Insur. Math. Econ. 51(2), 310–321 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chi, Y.C., Tan, K.S.: Optimal reinsurance under VaR and CVaR risk measures—a simplified approach. Astin Bull. 41(2), 547–574 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Chi, Y.C., Tan, K.S.: Optimal reinsurance with general premium principles. Insur. Math. Econ. 52, 180–189 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheung, K.C.: Optimal reinsurance revisited—a geometric approach. Astin Bull. 40(1), 221–239 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fang, Y., Qu, Z.: Optimal combination of quota-share and stop-loss reinsurance treaties under the joint survival probability. IMA J. Manag. Math. 25(1), 89–103 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hürlimann, W.: Optimal reinsurance revisited-point of view of cedent and reinsurer. ASTIN Bull. 41(2), 547–574 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Jiang, W.J., Ren, J., Zitikis, R.: Optimal reinsurance policies when the interests of both the cedent and the reinsurer are taken into account. ASTIN Bull. J. Int. Actuar. Assoc. http://ssrn.com/abstract=2840218 (2016)

  16. Lu, Z.Y., Liu, L.P., Meng, S.W.: Optimal reinsurance with concave ceded loss functions under VaR and CTE risk measures. Insur. Math. Econ. 52, 46–51 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tan, K.S., Weng, C., Zhang, Y.: VaR and CTE criteria for optimal quota-share and stop-loss reinsurance. N. Am. Actuar. J. 13(4), 459–482 (2009)

    Article  MathSciNet  Google Scholar 

  18. Tan, K.S., Weng, C., Zhang, Y.: Optimality of general reinsurance contracts under CTE risk measure. Insur. Math. Econ. 49(2), 175–187 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou, X.H., Zhang, H.D., Fan, Q.Q.: Optimal limited stop-loss reinsurance under VaR, TVaR, CTE risk measures. Math. Prob. Eng. 2015:12, Article ID 143739 (2015)

Download references

Acknowledgements

The authors would like to thank the referees for their helpful comments. The research was supported by National Natural Science Foundation of China (11201271) and Shandong Provincial Scientific Research Foundation for Excellent Young Scientists (BS2013SF003) .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Fang.

Appendix

Appendix

Proof of Theorem 3.1

(1) If the reinsurance premium \(\pi \left( \cdot \right) \) satisfies \(\pi \left( {bX} \right) = b\pi \left( X \right) \) for any \( 0 \le b \le 1\), then it follows from (3.1) that the loss function for quota-share reinsurance is given by

$$\begin{aligned} L\left( b \right) = \lambda S_X^{ - 1}\left( \alpha \right) + b\left( {\lambda \pi \left( X \right) - \left( {2\lambda - 1} \right) S_X^{ - 1}\left( \alpha \right) } \right) . \end{aligned}$$
(7.1)

Note that \(L\left( b \right) \) is linear in b. Therefore,

(a) If \(\lambda \in [0, \frac{1}{2}]\), then \({\lambda \pi \left( X \right) - \left( {2\lambda - 1} \right) S_X^{ - 1}\left( \alpha \right) }>0\), hence the optimal quota-share coefficient \({b^ * } = 0\).

(b) If \(\lambda \in (\frac{1}{2},1]\), the sign of \({\lambda \pi \left( X \right) - \left( {2\lambda - 1} \right) S_X^{ - 1}\left( \alpha \right) }\) depends on the relative magnitude between \(\lambda \pi \left( X \right) \) and \(\left( {2\lambda - 1} \right) S_X^{ - 1}\left( \alpha \right) \), then the optimal quota-share coefficient \({b^ * }\) is determined as in (3.3).

(2) If \(\pi \left( {bX} \right) \) is strictly convex in b for \(0 \le b \le 1\), then it follows from (3.1) that

$$\begin{aligned} L'\left( b \right) = \left( {1-2\lambda } \right) S_X^{ - 1}\left( \alpha \right) + \lambda \pi _{b} '\left( {bX} \right) , \qquad L''\left( b \right) = \lambda \pi _{b} ''\left( {bX} \right) > 0. \end{aligned}$$

Therefore, the loss function L(b) is also strictly convex in b. Hence the nontrivial optimal quota-share reinsurance exists if and only if that L(b) attains its global minimum value at some \(b^{*}\in (0,1)\), i.e., there exists a constant \({b^ * } \in \left( {0,1} \right) \) such that \(L'(b)|_{b = b^{*} }=\lambda \pi _{b}'( b^{*}X ) + ( 1 - 2\lambda )S_{X}^{ - 1}( \alpha ) = 0.\) \(\square \)

Proof of Proposition 3.1

Note that for premium principles (P1)–(P11),

$$\begin{aligned} \pi (0)=0, \quad \pi \left( {bX} \right) = b\pi \left( X \right) . \end{aligned}$$
(7.2)

Then it follows from Theorem 3.1 (1) the optimal quota-share reinsurance is trivial and the optimal quota-share coefficient is determined as in Theorem 3.1 (1). \(\square \)

Proof of Proposition 3.2

(a) P12 (Variance principle): The reinsurance premium \(\pi \left( {bX} \right) = bE\left( X \right) + {b^2}\beta D\left( X \right) \) is strictly convex in b, and the loss function \(L\left( b \right) \) is also strictly convex in b. Therefore, it follows from Theorem 3.1 (b) that the optimal quota-share reinsurance is nontrivial if and only if there exists a constant \({b^ * } \in \left( {0,1} \right) \), such that

$$\begin{aligned} L'(b^{*})= & {} \lambda \pi '\left( {{b^ * }X} \right) + \left( {1 - 2\lambda } \right) S_X^{ - 1}\left( \alpha \right) \\= & {} \lambda \left[ {E\left( X \right) + 2{b^ * }\beta D\left( X \right) } \right] + \left( {1 - 2\lambda } \right) S_X^{ - 1}\left( \alpha \right) = 0. \end{aligned}$$

This is equivalent to \(L'(0)<0\) and \(L'(1)>0\), i.e. \(\lambda E\left( X \right)< \left( {2\lambda - 1} \right) S_X^{ - 1}\left( \alpha \right) < \lambda E\left( X \right) + 2\lambda \beta D\left( X \right) .\)

(b)–(e) We omit the proofs of (b)–(e) because the proofs are similar to (a). \(\square \)

Proof of Theorem 4.1

(1) If the loss function L(d) is concave on \([0, S_X^{ - 1}( \alpha )]\), then L(d) is increasing or decreasing or first increasing and then decreasing on \(\left[ {0,S_X^{ - 1}\left( \alpha \right) } \right] \). And since the loss function \(L\left( d \right) \) is decreasing in d on \(\left( {S_X^{ - 1}\left( \alpha \right) ,\infty } \right) \), then the loss function \(L\left( d \right) \) attains its minimum value at either \(d=0\) or \(d\rightarrow \infty \), which implies that the optimal stop-loss reinsurance is trivial.

Moreover, if L(d) is increasing or first increasing and then decreasing on \(\left[ {0,S_X^{ - 1}\left( \alpha \right) } \right] \), then the optimal stop-loss constant \({d^ * }\) depends on the relative magnitude between \(\lambda S_X^{ - 1}\left( \alpha \right) \) and \(\lambda \pi \left( X \right) + \left( {1 - \lambda } \right) S_X^{ - 1}\left( \alpha \right) \). The optimal stop-loss retentions are indicated below

$$\begin{aligned} {d^ * } = {\left\{ \begin{array}{ll} 0, &{}\quad \lambda S_X^{ - 1}\left( \alpha \right) > \lambda \pi \left( X \right) + \left( {1 - \lambda } \right) S_X^{ - 1}\left( \alpha \right) , \\ 0 \ or \ \infty , &{}\quad \lambda S_X^{ - 1}\left( \alpha \right) = \lambda \pi \left( X \right) + \left( {1 - \lambda } \right) S_X^{ - 1}\left( \alpha \right) ,\\ \infty ,&{}\quad \lambda S_X^{ - 1}\left( \alpha \right) < \lambda \pi \left( X \right) + \left( {1 - \lambda } \right) S_X^{ - 1}\left( \alpha \right) . \end{array}\right. } \end{aligned}$$
(7.3)

If L(d) is decreasing on \(\left[ {0,S_X^{ - 1}\left( \alpha \right) } \right] \), then the optimal stop-loss retention \({d^ * }=\infty \) because of the continuity of the loss function.

(2) If the loss function \(L\left( d \right) \) is decreasing in d on \(\left[ {0,{d_0}} \right] \) while increasing on \(\left[ {{d_0},S_X^{ - 1}\left( \alpha \right) } \right] \), (4.7) ensures that the loss function \(L\left( d \right) \) attains its global minimum at \({d_0}\), then the optimal stop-loss reinsurance is nontrivial; On the contrary, while the optimal stop-loss reinsurance is nontrivial, then \({d_0}\) is the global minimum for \(L\left( d \right) \), hence (4.7) holds. \(\square \)

Proof of Proposition 4.1

The results for these premium principles can be verified by resorting to Theorem 4.1 (2).

(a) P1 (Expectation principle): Under expectation principle, the loss function and its derivatives on \([0, S_{X}^{-1}(\alpha )]\) are given by

$$\begin{aligned} L\left( d \right)= & {} \left( {2\lambda - 1} \right) d + \lambda \left( {1 + \beta } \right) \int _d^\infty {{S_X}\left( x \right) dx} + \left( {1 - \lambda } \right) S_X^{ - 1}\left( \alpha \right) ,\quad \end{aligned}$$
(7.4)
$$\begin{aligned} L'\left( d \right)= & {} 2\lambda - 1 - \lambda \left( {1 + \beta } \right) {S_X}\left( d \right) , \end{aligned}$$
(7.5)
$$\begin{aligned} L''\left( d \right)= & {} - \lambda \left( {1 + \beta } \right) {{S'}_X}\left( d \right) > 0. \end{aligned}$$
(7.6)

Therefore, the first derivative \(L'\left( d \right) \) is strictly increasing in d on \([0, S_{X}^{-1}(\alpha )]\). Note that

$$\begin{aligned} L'\left( 0 \right) = 2\lambda - 1 - \lambda \left( {1 + \beta } \right) {S_X}\left( 0 \right) ,\qquad L'\left( {S_X^{ - 1}\left( \alpha \right) } \right) = 2\lambda - 1 - \lambda \alpha \left( {1 + \beta } \right) . \end{aligned}$$

(1) If \(L'\left( 0 \right) > 0\), that is \(\frac{1}{{2 - \left( {1 + \beta } \right) {S_X}\left( 0 \right) }}< \lambda < 1\). For any \( d \in \left[ {0,S_{X}^{-1}(\alpha ) } \right] \), \(L'\left( d \right) > 0\), then \(L\left( d \right) \) is increasing in d, therefore the optimal stop-loss retention \({d^ * }\) depends on the relative magnitude between \(L\left( 0 \right) \) and \(\lambda S_X^{ - 1}\left( \alpha \right) \), i.e.

$$\begin{aligned} {d^ * } = {\left\{ \begin{array}{ll} 0, &{}\quad \lambda S_X^{ - 1}\left( \alpha \right) > L\left( 0 \right) ,\\ 0 \ or \ \infty , &{}\quad \lambda S_X^{ - 1}\left( \alpha \right) = L\left( 0 \right) ,\\ \infty , &{}\quad \lambda S_X^{ - 1}\left( \alpha \right) < L\left( 0 \right) . \end{array}\right. } \end{aligned}$$

In this case, the optimal reinsurance is trivial.

(2) If \(L'\left( {S_X^{ - 1}\left( \alpha \right) } \right) < 0\), that is \(0< \lambda < \frac{1}{{2 - \alpha \left( {1 + \beta } \right) }}\), then \(L\left( d \right) \) is decreasing in d, therefore the optimal stop-loss retention is \({d^ * = \infty }\). The optimal reinsurance is also trivial in this case.

(3) If \(L'\left( 0 \right) < 0\) and \(L'\left( {S_X^{ - 1}\left( \alpha \right) } \right) > 0\), that is

$$\begin{aligned} \frac{1}{{2 - \alpha \left( {1 + \beta } \right) }}< \lambda < \frac{1}{{2 - \left( {1 + \beta } \right) {S_X}\left( 0 \right) }}. \end{aligned}$$

Then there exists a positive constant \({d_0}\) such that the loss function \(L\left( d \right) \) is decreasing in d on \(\left[ {0,{d_0}} \right] \) while increasing on \(\left[ {{d_0},S_X^{ - 1}\left( \alpha \right) } \right] \), where \({d_0}\) satisfies

$$\begin{aligned} L'\left( {{d_0}} \right) = 2\lambda - 1 - \lambda \left( {1 + \beta } \right) {S_X}\left( {{d_0}} \right) = 0. \end{aligned}$$

Thus the optimal stop-loss retention \({d^ * }\) depends on the relative magnitude between \(L\left( {d_0} \right) \) and \(\lambda S_X^{ - 1}\left( \alpha \right) \), that is

$$\begin{aligned} {d^ * } = {\left\{ \begin{array}{ll} {d_0}, &{}\quad \lambda S_X^{ - 1}\left( \alpha \right) > L\left( {d_0} \right) ,\\ {d_0} \ or \ \infty , &{}\quad \lambda S_X^{ - 1}\left( \alpha \right) = L\left( {d_0} \right) ,\\ \infty , &{}\quad \lambda S_X^{ - 1}\left( \alpha \right) < L\left( {d_0} \right) . \end{array}\right. } \end{aligned}$$

Therefore, the optimal stop-loss reinsurance is nontrivial if and only if

$$\begin{aligned} \frac{1}{{2 - \alpha \left( {1 + \beta } \right) }}< \lambda < \frac{1}{{2 - \left( {1 + \beta } \right) {S_X}\left( 0 \right) }} \end{aligned}$$
(7.7)

and

$$\begin{aligned} \lambda S_X^{ - 1}\left( \alpha \right) > \left( {2\lambda - 1} \right) {d_0} + \lambda ( 1 + \beta )\int _{d_{0}}^\infty {S_X}( x )dx + \left( {1 - \lambda } \right) S_X^{ - 1}\left( \alpha \right) . \end{aligned}$$
(7.8)

(b)-(d) We omit the proofs of (b)-(d), because they are similar to (a).

(e) P8 (Standard deviation principle): Under standard deviation principle, the loss function and its first and second derivatives are given by

$$\begin{aligned} L\left( d \right)= & {} \left( {2\lambda - 1} \right) d + \lambda E{\left[ {X - d} \right] _ + } + \lambda \beta \sqrt{D{{\left[ {X - d} \right] }_ + }} + \left( {1 - \lambda } \right) S_X^{ - 1}\left( \alpha \right) ,\nonumber \\ \end{aligned}$$
(7.9)
$$\begin{aligned} L'\left( d \right)= & {} \lambda - 1 + \lambda \left( {1 - {S_X}\left( d \right) } \right) \left( {1 - \beta \frac{{E{{\left[ {X - d} \right] }_ + }}}{{\sqrt{D{{\left[ {X - d} \right] }_ + }} }}} \right) , \end{aligned}$$
(7.10)
$$\begin{aligned} L''\left( d \right)= & {} - \lambda {{S'}_X}\left( d \right) \left( {1 - \beta \frac{{E{{\left[ {X - d} \right] }_ + }}}{{\sqrt{D{{\left[ {X - d} \right] }_ + }} }}} \right) \nonumber \\&+\,\beta \lambda \left( {1 - {S_X}\left( d \right) } \right) \frac{{{S_X}\left( d \right) D{{\left[ {X - d} \right] }_ + } - \left( {1 - {S_X}\left( d \right) } \right) {E^2}{{\left[ {X - d} \right] }_ + }}}{{{{\left( {D{{\left[ {X - d} \right] }_ + }} \right) }^{{3/2}}}}}.\nonumber \\ \end{aligned}$$
(7.11)

Let

$$\begin{aligned} {g_1}\left( d \right) = 1 - \beta \frac{{E{{\left[ {X - d} \right] }_ + }}}{{\sqrt{D{{\left[ {X - d} \right] }_ + }} }}, \end{aligned}$$
(7.12)

then

$$\begin{aligned} {{g'}_1}\left( d \right) = \beta \frac{{{S_X}\left( d \right) D{{\left[ {X - d} \right] }_ + } - \left( {1 - {S_X}\left( d \right) } \right) {E^2}{{\left[ {X - d} \right] }_ + }}}{\left( D{\left[ {X - d} \right] }_ {+}\right) ^{3/2}}. \end{aligned}$$
(7.13)

Let

$$\begin{aligned} q\left( d \right) = {S_X}\left( d \right) D\left[ {X - d} \right] _ {+} - \left( {1 - {S_X}\left( d \right) } \right) {E^2}\left[ {X - d} \right] _ +, \end{aligned}$$
(7.14)

then

$$\begin{aligned} q'\left( d \right) = {{S'}_X}\left( d \right) E\left[ {X - d} \right] _ + ^2 < 0. \end{aligned}$$
(7.15)

Note that \(\lim \limits _{d\rightarrow \infty } q(d)= 0\). Therefore \(q\left( d \right) > 0\) and \({{g}_1}\left( d \right) \) is strictly increasing in d. If condition \(\beta E\left[ X \right] < \sqrt{D\left[ X \right] } \) holds, then \(L''\left( d \right) >0\) and \(L'\left( d \right) \) is increasing in d. Note that

$$\begin{aligned} L'\left( 0 \right)= & {} \lambda - 1 + \lambda \left( {1 - {S_X}\left( 0 \right) } \right) \left( {1 - \beta \frac{{E\left[ X \right] }}{{\sqrt{D\left[ X \right] } }}} \right) ,\\ L'\left( {S_X^{ - 1}\left( \alpha \right) } \right)= & {} \lambda - 1 + \lambda \left( {1 - \alpha } \right) \left( {1 - \beta \frac{{E{{\left[ {X - S_X^{ - 1}\left( \alpha \right) } \right] }_ + }}}{{\sqrt{D{{\left[ {X - S_X^{ - 1}\left( \alpha \right) } \right] }_ + }} }}} \right) . \end{aligned}$$

(1) If \(L'\left( 0 \right) > 0\), that is \(\lambda _g^1< \lambda < 1\), then \(L\left( d \right) \) is increasing in d on \([0, S_{X}^{-1}(\alpha )]\). Therefore the optimal stop-loss constant \({d^ * }\) depends on the relative magnitude between \(L\left( 0 \right) \) and \(\lambda S_X^{ - 1}\left( \alpha \right) \), i.e.

$$\begin{aligned} {d^ * } = {\left\{ \begin{array}{ll} 0, &{}\quad \lambda S_X^{ - 1}\left( \alpha \right) > L\left( 0 \right) ,\\ 0 \ or \ \infty , &{}\quad \lambda S_X^{ - 1}\left( \alpha \right) = L\left( 0 \right) ,\\ \infty , &{}\quad \lambda S_X^{ - 1}\left( \alpha \right) < L\left( 0 \right) , \end{array}\right. } \end{aligned}$$

where

$$\begin{aligned} \lambda _g^1 = \frac{1}{{1 + \left( {1 - {S_X}\left( 0 \right) } \right) \left( {1 - \beta \frac{{E\left[ X \right] }}{{\sqrt{D\left[ X \right] } }}} \right) }}. \end{aligned}$$

In this case, the optimal reinsurance is trivial.

(2) If \(L'\left( {S_X^{ - 1}\left( \alpha \right) } \right) < 0\), that is \(0< \lambda < \lambda _g^2\), then \(L\left( d \right) \) is decreasing in d, therefore the optimal stop-loss retention \({d^ * = \infty }\), where

$$\begin{aligned} \lambda _g^2 = \frac{1}{{1 + \left( {1 - \alpha } \right) \left( {1 - \beta \frac{{E{{\left[ {X - S_X^{ - 1}\left( \alpha \right) } \right] }_ + }}}{{\sqrt{D{{\left[ {X - S_X^{ - 1}\left( \alpha \right) } \right] }_ + }} }}} \right) }}. \end{aligned}$$

In this case, the optimal reinsurance is also trivial.

(3) If \(L'\left( 0 \right) < 0\) and \(L'\left( {S_X^{ - 1}\left( \alpha \right) } \right) > 0\), that is \(\lambda _g^2< \lambda < \lambda _g^1\). Then there exists a positive constant \({d_0}\) such that the loss function \(L\left( d \right) \) is decreasing in d on \(\left[ {0,{d_0}} \right] \) while increasing on \(\left[ {{d_0},S_X^{ - 1}\left( \alpha \right) } \right] \), where \({d_0}\) satisfies

$$\begin{aligned} L'\left( d_0 \right) = \lambda - 1 + \lambda \left( {1 - {S_X}\left( d_0 \right) } \right) \left( {1 - \beta \frac{{E\left[ X-d_{0} \right] _{+}}}{{\sqrt{D\left[ X -d_{0}\right] _{+}} }}} \right) = 0. \end{aligned}$$

Thus the optimal stop-loss retention \({d^ * }\) depends on the relative magnitude between \(L\left( {d_0} \right) \) and \(\lambda S_X^{ - 1}\left( \alpha \right) \), that is

$$\begin{aligned} {d^ * } = {\left\{ \begin{array}{ll} {d_0}, &{}\quad \lambda S_X^{ - 1}\left( \alpha \right) > L\left( {d_0} \right) ,\\ {d_0} \ or \ \infty , &{}\quad \lambda S_X^{ - 1}\left( \alpha \right) = L\left( {d_0} \right) ,\\ \infty , &{}\quad \lambda S_X^{ - 1}\left( \alpha \right) < L\left( {d_0} \right) . \end{array}\right. } \end{aligned}$$

Therefore, under condition \(\beta E\left[ X \right] < \sqrt{D\left[ X \right] } \), the optimal stop-loss reinsurance is nontrivial if and only if \(\lambda _g^2< \lambda < \lambda _g^1\) and \(\lambda S_X^{ - 1}\left( \alpha \right) > L\left( {d_0} \right) \).

(f) P10 (Generalized percentile principle): We omit the proof of (f), because it is similar to (a).

(g)–(i): We omit the proofs of (g)–(i), because they are similar to (e). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Fang, Y. Optimal quota-share and stop-loss reinsurance from the perspectives of insurer and reinsurer. J. Appl. Math. Comput. 57, 85–104 (2018). https://doi.org/10.1007/s12190-017-1096-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-017-1096-1

Keywords

Navigation