Skip to main content
Log in

Two proximal splitting methods for multi-block separable programming with applications to stable principal component pursuit

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Recent years have witnessed the rapid development of the first order methods for multi-block separable programming involving large-scale date-set. The purpose of this paper is to introduce two new first order methods, the proximal splitting methods (PSMs), for the model under consideration. The first PSM fully utilizes the desired property of such problems and adopts fully Jacobian updating rule, which often results in easy subproblems in practice. The global convergence and the worst-case \(\mathcal {O}(1/t)\) convergence rate in an ergodic sense of the first PSM are proved under the condition that the involved functions are assumed to be strongly convex. Applying the hybrid Jacobian and Gauss–Seidel updating rule to the first PSM, we derive the second PSM, whose global convergence can be guaranteed only under the condition that the involved functions are convex. Furthermore, its worst-case \(\mathcal {O}(1/t)\) convergence rate in both the ergodic and non-ergodic senses is also established. Finally, numerical results on stable principal component pursuit are reported to testify the accuracy and speed of the second PSM, and some numerical comparisons are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hestenes, M.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. Martinet, B.: Regularision d’inéquations variationnelles par approximations successive. Revue Francaise d’Automatique et Informatique Recherche Opérationnelle. 126, 154–159 (1970)

    Article  MATH  Google Scholar 

  3. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal points algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hou, L.S., He, H.J., Yang, J.F.: A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA. Comput. Optim. Appl. 63(1), 273–303 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. He, B.S., Tao, M., Yuan, X.M.: Alternating direction method with Gaussian-back substitution for separable convex programming. SIAM J. Optim. 22, 313–340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. He, B.S., Hou, L.S., Yuan, X.M.: On full Jacobian decomposition of the augmented lagrangian method for separable convex programming. SIAM J. Optim. 25(4), 2274–2312 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Han, D.R., Yuan, X.M.: A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155, 227–238 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, K., Desai, J., He, H.J.: A note on augmented Lagrangian-based parallel splitting method. Optim. Lett. 9, 1199–1212 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chao, M.T., Cheng, C.Z.: A note on the convergence of alternating proximal gradient method. Appl. Math. Comput. 228(1), 258–263 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Chen, C.H., He, B.S., Ye, Y.Y., Yuan, X.M.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155(1), 57–79 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Parikh, N., Boyd, S.P.: Proximal algorithms. Found Trends Opt. 1, 127–239 (2014)

    Article  Google Scholar 

  13. Wang, K., Desai, J., He, H.J.: A proximal partially parallel splitting method for separable convex programs. Optim. Methods Softw. 32(1), 39–68 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deng, W., Lai, M.J., Peng, Z.M., Yin, W.T.: Parallel multi-block ADMM with \(o(1/k)\) convergence. J. Sci. Comput. (2016) (in press)

  15. He, B.S., Tao, M., Yuan, X.M.: A splitting method for separate convex programming with linking linear constraints (2010) (manuscript)

  16. Lin, Z.C., Liu, R.S., Li, H.: Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning. Mach. Learn. 95(2), 287–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, B.S., Yuan, X.M., Zhang, W.X.: A customized proximal point algorithm for convex minimization with linear constraints. Comput. Optim. Appl. 56, 559–572 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gu, G.Y., He, B.S., Yuan, X.M.: Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach. Comput. Optim. Appl. 59, 135–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huai, K.Z., Ni, M.F., Ma, F., Yu, Z.K.: A customized proximal point algorithm for stable principal component pursuit with nonnegative constraint. J. Inequal. Appl. 2015, 148 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Q., Xu, Y.S., Zhang, N.: Two-step fixed-point proximity algorithms for multi-block separable convex problems. J. Sci. Comput. (2016) (in press)

  21. Chen, P.J., Huang, J.G., Zhang, X.Q.: A primal-dual fixed point algorithm for minimization of the sum of three convex separable functions. Fixed Point Theory Appl. 2016(1), 1–18 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Han, D.R., Yuan, X.M., Zhang, W.X., Cai, X.J.: An ADM-based splitting method for separable convex programming. Comput. Optim. Appl. 54, 343–369 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, Y.Y.: Accelerated first-order primal-dual proximal methods for linearly constrained composite convex programming (2016) (manuscript)

  24. He, B.S., Liu, H., Wang, Z.R., Yuan, X.M.: A strictly contractive Peaceman–Rachford splitting method for convex programming. SIAM J. Optim. 24(3), 1011–1040 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, S.Q.: Alternating proximal gradient method for convex minimization. J. Sci. Comput. 68(2), 546–572 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. He, B.S., Tao, M., Yuan, X.M.: A splitting method for separable convex programming. IMA J. Numer. Anal. 35, 394–426 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tao, M., Yuan, X.M.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21, 57–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to the anonymous reviewers who helped improve the quality of the manuscript and Doctor H.J. He for his kind offer of the Matlab codes used in this paper. This work is supported by the foundation of National Natural Science Foundation of China (No. 11601475), and Scientific Research Project of Shandong Universities (No. J15LI11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Sun, H. & Wang, Y. Two proximal splitting methods for multi-block separable programming with applications to stable principal component pursuit. J. Appl. Math. Comput. 56, 411–438 (2018). https://doi.org/10.1007/s12190-017-1080-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-017-1080-9

Keywords

Mathematics Subject Classification

Navigation