Skip to main content
Log in

Characterizations of families of rectangular, finite impulse response, para-unitary systems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We here study finite impulse response (FIR) rectangular, not necessarily causal, systems which are (para)-unitary on the unit circle (=the class \(\mathcal {U}\)). First, we offer three characterizations of these systems. Then, introduce a description of all FIRs in \(\mathcal {U}\), as copies of a real polytope, parametrized by the dimensions and the McMillan degree of the FIRs. Finally, we present six simple ways (along with their combinations) to construct, from any FIR, a large family of FIRs, of various dimensions and McMillan degrees, so that whenever the original system is in \(\mathcal {U}\), so is the whole family. A key role is played by Hankel matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Passive electrical circuits are either dissipative or lossless.

  2. For example, in studying classical filters a “high-pass” could be viewed as an “all-pass” minus a “low-pass”.

  3. = Bounded at infinity and in engineering called  causal  or colloquially  proper.

  4. In the sequel, boldface characters will stand for block-structured matrices.

  5. In general, the Hankel operator is infinite, but since we here focus on F(z) in (2.2) with a FIR, the corresponding Hankel matrix is finite and no truncation is needed.

  6. For given n and \(\rho \), one can always find \(\zeta \in [0, \rho -1]\) so that \(\frac{n+\zeta }{\rho }\) is natural. Then, the last part of \({\mathbf B_{\frac{n}{\rho }}}\) in (2.15) is comprized of zeros.

References

  1. Alpay, D., Gohberg, I.: Unitary rational matrix functions. In: Gohberg, I. (ed.) Topics in Interpolation Theory of Rational Matrix-Valued Functions, Operator Theory: Advances and Applications, vol. 33, pp. 175–222. Birkhäuser Verlag, Basel (1988)

    Chapter  Google Scholar 

  2. Alpay, D., Gohberg, I.: On orthogonal matrix polynomial. In: Gohberg, I. (ed.) Orthogonal Matrix-Valued Polynomials and Applications, Operator Theory: Advances and Applications, vol. 34, pp. 25–46. Birkhäuser Verlag, Basel (1988)

    Chapter  Google Scholar 

  3. Alpay, D., Jorgensen, P.E.T, Lewkowicz, I.: Extending wavelet filters. Infinite-dimensions, the non-rational case and Indefinite-inner product spaces. In: Excursions in Harmonic Analysis Book Series, vol. 2, Chap 5, pp. 71-113, Springer-Birkhäuser, New York (2012)

  4. Alpay, D., Jorgensen, P., Lewkowicz, I.: Extending wavelet filters. Infinite dimensions, the non-rational case and indefinite-inner product spaces. In: Excursions in Harmonic Analysis Book Series, vol. 2, Chap. 5, pp. 71-113, Springer-Birkhäuser, New York (2012)

  5. Alpay, D., Jorgensen, P.E.T., Lewkowicz, I.: Parameterization of all wavelet filters: Input-output and State Space. Sampl. Theory Signal Image Process. 12, 159–188 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Alpay, D., Jorgensen, P.E.T., Lewkowicz, I.: Characterizations of rectangular, (para)-unitary rational functions. a manuscript

  7. Alpay, D., Jorgensen, P.E.T, Lewkowicz, I.: Filter banks—an interpolation approach. A manuscript

  8. Alpay, D., Jorgensen, P., Lewkowicz, I., Marziano, I.: Representation formulas for hardy space functions through the Cuntz relations and new interpolation problems. In: Shen, X., Zayed, A.I. (eds.) Multiscale Signal Analysis and Modeling. In the series Lecture Notes in Electrical Engineering, Springer. http://arxiv.org/abs/1104.0621

  9. Alpay, D., Rakowski, M.: Co-Isometrically Valued Matrix Functions Operator Theory: advances & Application, vol. 80. Birkhäuser, Basel (1995)

    MATH  Google Scholar 

  10. Bart, H., Gohberg, I., Kaashoek, M.: Minimal Factorization of Matrix and Operator and Functions, Operator Theory: advances and Applications, vol. 1. Birkhäuser, Basel (1979)

    Book  MATH  Google Scholar 

  11. Bratteli, O., Jorgensen, P.E.T.: Wavelet filters and infinite-dimensional unitary groups. In: Proceedings of the International Conference on Wavelet Analysis and Applications (Guangzhou, China 1999), AMS/IP Stud. Adv. Math., Amer. Math. Soc. 25, pp. 35–65 (2002)

  12. Bratteli, O., Jorgensen, P.E.T.: Wavelets Through the Looking Glass. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

  13. Cescato, D., Bölcskei, H.: QR decomposition of Laurent polynomial matrices sampled on the unit circle. IEEE Trans. Inf. Theory 56, 4754–4761 (2010)

    Article  MathSciNet  Google Scholar 

  14. Cescato, D., Bölcskei, H.: Algorithms for interpolation-based QR decomposition in MIMO-OFDM systems. IEEE Trans. Signal Proc. 59, 1719–1733 (2011)

    Article  MathSciNet  Google Scholar 

  15. Chai, L., Zhang, J., Zhang, C., Mosca, E.: Optimal noise reduction in oversampled PR filter banks. IEEE Trans. Signal Proc. 57, 3844–3857 (2009)

    Article  MathSciNet  Google Scholar 

  16. Davidson, T.N.: Enriching the art of FIR filter design via convex optimization (efficient evaluation of inherent tradeoffs). IEEE Signal Proc. Mag. 27, 89–101 (2010)

    Article  Google Scholar 

  17. Genin, Y., Van Dooren, P., Kailath, T., Delosme, J.M., Morf, Martin: On \(\Sigma -\)Lossless transfer functions and related questions. Linear Algebr. & Appl. 50, 251–275 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gohberg, I., Lancaster, P., Rodman, L.: Representations and divisibility of operator polynomials. Can. J. Math. 30, 1045–1069 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hassibi, B., Sayed, A.H., Kailath, T.: Indefinite-Quadratic Estimation and Control, A Unified Approach to \(H^2\) and \(H^{\infty }\) Theories. SIAM, Englewood Cliffs (1999)

    Book  MATH  Google Scholar 

  20. Hoang, H.G., Tuan, H.D., Nguyen, T.Q.: Frequency selective KYP lemma, IIR filter and filter bank design. IEEE Trans. Signal Proc. 57, 956–965 (2009)

    Article  MathSciNet  Google Scholar 

  21. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  22. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  23. Icart, S.: Matrices polynomiales et égaliation de canal. In: Mémoire d’Habilitation à diriger des recherches, Polytech’Nice- Sophia Antipolis Département Électronique, (In French) (2013)

  24. Jorgensen, P.E.T.: Matrix factorizations, algorithms, wavelets. Not. Am. Math. Soc. 50, 880–894 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Jorgensen, P.E.T.: Analysis and Probability: wavelets, Signals, Fractals, Graduate Texts in Mathematics, vol. 234. Springer, New York (2006)

    Google Scholar 

  26. Jorgensen, P.E.T.: Unitary matrix functions, wavelet algorithms, and structural properties of wavelets. In: Gabor and Wavelet Frames, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 10, pp. 107–166, World Science Publisher, Hackensack (2007)

  27. Levinson, Y., Mirkin, L.: FIR stabilization in discrete one-sided model matching problem. Automatica 48, 2990–2992 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Levinson, Y., Mirkin, L.: \(L^2\) Optimization in discrete FIR estimation: exploiting dtate-space structure. SIAM J. Control Optim. 51, 419–441 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. Academic Press, Paris (2009)

    MATH  Google Scholar 

  30. McWhirter, J.G., Baxter, P.D., Cooper, T., Redif, S., Foster, J.: An EVD algorithm for para-hermitian polynomial matrices. IEEE Trans. Signal Proc. 55, 2158–2169 (2007)

    Article  MathSciNet  Google Scholar 

  31. Olivi, M.: Parametrization of rational lossless matrices with applications to linear system theory. Université De Nice Sophia Antipolis, Mthématique, Mémoire d’Habilitation à Diriger des Recherches (2010)

  32. Oraintara, S., Tran, T.D., Heller, P.N., Nguyen, T.Q.: Lattice structure for regular para-unitary linear-phase filter-banks and \(M\)-band orthogonal symmetric wavelets. IEEE Trans. Signal Proc. 49, 2659–2672 (2001)

    Article  Google Scholar 

  33. Potapov, V.P.: Multiplicative structure of J-nonexpansive matrix functions. Trudy Mosk. Math. Ob. 4 (1955), pp. 125236 [Russian]; English Translation: AMS Translations, Series 2, 15, pp. 131–243 (1960)

  34. Redif, S., McWhirter, J.G., Weiss, S.: Design of FIR paraunitary filter banks for subband coding using polynomial eigenvalue decomposition. IEEE Trans. Signal Proc. 59, 5253–5264 (2011)

    Article  MathSciNet  Google Scholar 

  35. Rissanen, J.: Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with applications to factoring positive matrix polynomials. Math. Comput. 27(121), 147–154 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sørensen, M., De Lathauwer, L., Icart, S., Deneire, L.: On Jacobi-type methods for blind equalization of paraunitary channels. Signal Process. 92, 617–625 (2012)

    Article  Google Scholar 

  37. Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Cambridge (1996)

    MATH  Google Scholar 

  38. Tohidan, M., Amindavar, H., Reza, A.M.: A DFT-based approximate eigenvalue and singular value decompositiob of polynomial matrices. EURASIP J. Adv. Signal Process. 93, 1–16 (2013)

    Article  Google Scholar 

  39. Tuqan, J., Vaidyanathan, P.P.: A state space approach to the design of globally optimal FIR energy compaction filters. IEEE Trans. Signal Proc. 48, 2822–2838 (2000)

    Article  Google Scholar 

  40. Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Prentice-Hall, Englewood Cliffs (1993). Signal Processing Series

    MATH  Google Scholar 

  41. Valli, G.: Interpolation theory, loop groups and instantons. J. Reine Math. 446, 137–163 (1994)

    MathSciNet  MATH  Google Scholar 

  42. Vikalo, H., Hassibi, B., Erdogan, A., Kailath, T.: On robust signal reconstruction in noisy filter banks. Eurasip Signal Process. 85, 1–14 (2005)

    Article  MATH  Google Scholar 

  43. Yang, G., Zheng, N.: An optimization algorithm for biorthogonal wavelet filter banks design. Int. J. Wavelets Multiresolut. Inf. Process. 6, 51–63 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research is partially supported by the BSF Grant no. 2010117. D. Alpay: the Earl Katz family for endowing the chair which supported his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Alpay.

Appendix: Construction of families of FIRs

Appendix: Construction of families of FIRs

For each of the items I  through  VI  from Subsect. 2.2 we here fill-in the following details:

  1. 1.

    Construct new polynomials from the original one.

  2. 2.

    Show that whenever the original polynomial was in \(\mathcal {U}\), so are the newly constructed polynomials.

I.   Reverse polynomial

Using \({\mathbf T}\) from (2.18),

$$\begin{aligned} \begin{array}{lll} F_\mathrm{rev}(z)&{}:=&{} z^{-1}B_n+z^{-2}B_{n-1}+~\ldots ~+z^{n-1}B_2+z^nB_1\\ ~&{}=&{} {\mathbf Z}{\mathbf T}_{n, p}{\mathbf B}_0= \hat{\mathbf B}{\mathbf T}_{n, m}\hat{\mathbf Z}\end{array}. \end{aligned}$$

The realtion with the corresponding Hankel matrix is straightforward and thus omitted.

II.   Preserving the McMillan degree.

For simplicity of exposition we consider as an illustrative example the polynomial F(z) in (2.1) with \(n=4\) and the parameter q attaining the values \(-1\) and \(-2\).

  • a.   For \(q=-1\) the corresponding Hankel matrix, \({\mathbf H_1}\) from (2.8) can be, without loss of generality, extended with a row and a column of zeros so it is \(6p\times 6m\). Now the resulting Hankel matrix may be partitioned in two forms,

    which produce the two polynomials in item  II  a.

    Following Theorem 4.1 note that

    so indeed the polynoial is in \(\mathcal {U}\).

  • b.   Substituting in F(z) in (2.12) \(q=-2\) yield a Hankel matrix \({\mathbf H}_2\) with three partitionings

    so that the three polynomials in item  II  b  are obtained.

These three polynomials are in \(\mathcal {U}\), as following Theorem 4.1 one obtains,

To make the last construction more realistic take for example, \(m=p=2\) and

In items III through VI we produce more elaborate structures out of a given Hankel matrix. To this end, we find it convenient to introduce the following notation. Let \(\alpha ,\beta \ge 0\) and \(\eta ,\delta >0\) be integers. One can construct the following \((\alpha +\beta +\eta )\delta \times \eta \delta \) isometry, i.e. \(U_\mathrm{Iso}^*U_\mathrm{Iso}=I_{\eta \delta }\),

(5.1)

Similarly, \(U_\mathrm{Coiso}\) is the following \(\eta \delta \times (\alpha +\beta +\eta )\delta \) coisometry, i.e. \(U_\mathrm{Coiso}U_\mathrm{Coiso}^*=I_{\eta \delta }\),

(5.2)

Let \(\rho \in \{1,~2,~\ldots ~,~n\}\) be so that \(\frac{n}{\rho }\) is natural. Substitute in \(~U_\mathrm{Iso}\) and in \(~U_\mathrm{Coiso}\) see (5.1), (5.2) respectively: \(\alpha =a\rho {p}\), \(\beta =b\rho {p}\), with \(a, b\ge 0\) integers, \(\eta =\frac{n}{\rho }\), \(\delta =\rho {p}~\) and consider the pair of products,

(5.3)

and

(5.4)

Both cases yield the same \((a+b+1)np\times (a+b+1)nm\) Hankel matrix, denoted by \({\mathbf H}(a, b, \rho )\). For example,

(5.5)

or

(5.6)

or for \(~n=6\)

III.   Doubling the powers.

First note that \({\mathbf H}(a, b, 1)\) (i.e. when \(\rho =1\)) corresponds to \(p\times m\)-valued polynomial in (2.13) with \(\gamma :=a+b+1\).

As another example, the above Hankel matrix \({\mathbf H}(0,~1,~3)\) is associated with the polynomial F(z) in (2.14).

IV.   Rectangular polynomials.

Another sample of a Hankel matrix associated with \(U_\mathrm{Iso}{\mathbf B_o}~\) in (5.3) (or \(\hat{{\mathbf {B}}}_{o} U_\mathrm{Coiso}\) in (5.4)) is obtained when the parameters are \(~a=2\), \(b=2\) \(\rho =2\), i.e. Now, multiplying \({\mathbf H}(a,~b,~\rho )\) from the  right  by \(U_\mathrm{Iso}\) in (5.1) with the parameters \(\alpha =(\rho -1)m\), \(\beta =0\), \(\eta =\frac{n}{\rho }(a+b+1)\) and \(\delta =m\) yields the following \((a+b+1)np\times (a+b+1)\frac{n}{\rho }m\) Hankel matrix (here \(a=2, b=2, \rho =2\))

(5.7)

which corresponds to the \(p\rho \times m\)-valued polynomial in IV a.

Similarly, multiplying \({\mathbf H}(a,~b,~\rho )\) from the  left  by \(U_\mathrm{Coiso}\) in (5.2) with the parameters \(~\alpha =(\rho -1)p\), \(\beta =0\), \(\eta =\frac{n}{\rho }(a+b+1)\) and \(\delta =p~\) yields the following \((a+b+1)\frac{n}{\rho }p\times (a+b+1)nm\) Hankel matrix (here \(a=2, b=2, \rho =2\))

(5.8)

which corresponds to the \(p\times \rho {m}\)-valued polynomial in IV b.

It is easy to verify that if \({\mathbf H_o}\) satisfies the first line in (4.5) then so do all Hankel matrices of the form \({\mathbf H}_0U_\mathrm{Iso}\) (5.7).

Similarly, if \({\mathbf H}_0\) satisfies the second line in (4.5) then so do all Hankel matrices of the form \(U_\mathrm{Coiso}{\mathbf H}_0\) (5.8).

In the sequel, we shall adjust our previous notation in (2.8) of the Hankel matrix associated with

$$\begin{aligned} F(z)=z^{-(1+\eta )}B_1+~\ldots ~+z^{-(n+\eta )}B_n \quad \quad \quad \quad \eta \ge 0, \end{aligned}$$

to \(~ {\mathbf H}_{\mathbf {B}, n, \eta } \) (in (2.8) the subscricts B and n were omitted, as so far they were evident from the context). For example, with the polynomial

$$\begin{aligned} z^{-(1+\eta )}C_1+~\ldots ~+z^{-(l+\eta )}C_l \quad \quad \quad \quad \eta =0,~1,~2\ldots \end{aligned}$$

one can associate the \((l+\eta )p_c\times (l+\eta )m_c\) Hankel matrix,

V.   Composition of polynomials.

With the pair of poynomilas in (2.16) one can associated the Hankel matrices \({\mathbf H}_{\mathbf {B}, n, 0}\) and \({\mathbf H}_{\mathbf {C}, l, 0}\), which are of dimensions \(np_b\times nm_b\) and \(lp_c\times nm_c\), respectively.

Out of this pair, one can construct (at least) the  three  following Hankel matrices, all of the form \({\mathbf H}_{\mathbf {D}, n, 0}~\):

  • a.   A \(~n(p_b+p_c)\times n(m_b+m_c)\) Hankel matrix

    or another \(~n(p_b+p_c)\times n(m_b+m_c)\) Hankel matrix

  • b.   For \(m_c\ge m_b~\) a \(~n(p_b+p_c)\times nm_c\) Hankel matrix

  • c.   For \(p_b\ge p_c\) a \({ np}_{ b}\times (m_b+m_c)n\) Hankel matrix

VI.   Product of polynomials

Recall that out of

$$\begin{aligned} \begin{matrix} F_b(z)&{}=&{}z^{-1}B_1+\ldots ~z^{-n}B_n&{}&{}p_b\times \rho \\ ~\\ F_c(z)&{}=&{}z^{-1}C_1+\ldots ~z^{-l}C_l&{}&{}\rho \times m_c \end{matrix} \end{aligned}$$

the following \(~p_b\times m_c\)-valued polynomial was obtained

$$\begin{aligned} F_d(z):=F_b(z)F_c(z)=z^{-1}\left( z^{-1}D_1+~\ldots ~+z^{-(n+l-1)}D_{n+l-1}\right) ~. \end{aligned}$$
(5.9)

where the coefficients \(D_1~,~\ldots ~,~D_{n+l-1}~\) were explicitely given in (2.17).

Expressing, (2.17) in terms of corresponding Hankel matrices yields

$$\begin{aligned} {\mathbf H}_{\mathbf {D}, n+l-1, 1}= {\mathbf H}_{\mathbf {B}, n, l}{\mathbf T}_{m+l, \rho } {\mathbf H}_{\mathbf {C}, l, n}~, \end{aligned}$$
(5.10)

where the Hankel matrices \({\mathbf H}_{\mathbf {B}, n, l}\), \({\mathbf H}_{\mathbf {C}, l, n}~\) and \(~{\mathbf H}_{\mathbf {D}, n+l-1, 1}~\) are \((n+l)p_b\times (n+l)\rho \), \((n+l)\rho \times (n+l)m_c~\) and \(~(n+l)p_b\times (n+l)m_c~\) respectively, while \(~{\mathbf T}_{m+l, \rho }\) is the permutation matrix as in (2.18).

Next, to establish the fact that \(F_d(z)\) is in \(~\mathcal {U}\), we go through the following steps.

First, from (5.10) note that

$$\begin{aligned} {\mathbf H}_{\mathbf {D}, n+l-1, 1}^*{\mathbf H}_{\mathbf {D}, n+l-1 , 1} ={\mathbf H}_{\mathbf {C}, l, n}^*{\mathbf T}_{m+l, \rho } {\mathbf H}_{\mathbf {B}, n, l}^*{\mathbf H}_{\mathbf {B}, n, l} {\mathbf T}_{m+l, \rho }{\mathbf H}_{\mathbf {C}, l, n}~. \end{aligned}$$

Assuming now that \(~F_b\in \mathcal {U}\), it follows from (4.5) that

$$\begin{aligned} {\mathbf H}_{\mathbf {D}, n+l-1, 1}^* {\mathbf H}_{\mathbf {D}, n+l-1, 1}= & {} {\mathbf H}_{\mathbf {C}, l , n}^*{\mathbf T}_{m+l, \rho }\cdot \mathrm{diag}\{I_{(l+1)\rho }\quad \Delta _{(n-1)\rho }\}\cdot {\mathbf T}_{m+l, \rho }{\mathbf H}_{\mathbf {C}, l,n}\\= & {} {\mathbf H}_{\mathbf {C}, l, n}^*\cdot \mathrm{diag}\{\Delta _{(n-1)\rho }\quad I_{(l+1)\rho }\}\cdot {\mathbf H}_{\mathbf {C}, l, n}~, \end{aligned}$$

where \(\Delta _{(n-1)\rho }\) is \(~(n-1)\rho \times (n-1)\rho ~\) positive semi-definite (weak) contraction.

Assuming now that also \(~F_c\in \mathcal {U}\), (carefully following the dimensions) it follows from (4.5) that

$$\begin{aligned} {\mathbf H}_{\mathbf {D}, n+l-1, 1}^* {\mathbf H}_{\mathbf {D}, n+l-1, 1}= \mathrm{diag}\{I_{2p_b}\quad \hat{\Delta }_{(n+l-2)p_b}\}, \end{aligned}$$

where \(\hat{\Delta }_{(n+l-2)p_b}\) is a \(~(n+l-1)p_b\times (n+l-1)p_b~\) positive semi-definite (weak) contraction, this part is estabilished and indeed \(F_d\in \mathcal {U}\).

Showing the relation for \({\mathbf H}_{\mathbf {D}, n+l-1, 1} {\mathbf H}_{\mathbf {D}, n+l-1, 1}^*\) is quite similar and thus omitted. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpay, D., Jorgensen, P. & Lewkowicz, I. Characterizations of families of rectangular, finite impulse response, para-unitary systems. J. Appl. Math. Comput. 54, 395–423 (2017). https://doi.org/10.1007/s12190-016-1015-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-016-1015-x

Keywords

Mathematics Subject Classification

Navigation