Skip to main content
Log in

Almost periodic solution analysis in a two-species competitive model of plankton alleopathy with impulses

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate a two-species competitive model of plankton alleopathy with impulses. By constructing a suitable Lyapunov function, we establish some sufficient conditions which guarantee the uniformly asymptotic stability of a unique positive almost periodic solution for the model. An example with its numerical simulations is given which is in a good agreement with our theoretical analysis. Our results are new and complement previously known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liu, M., Wang, K.: A note on a delay Lotka-Volterra competitive system with random perturbations. Appl. Math. Lett. 26(6), 589–594 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Du, N.H., Dang, N.H.: Dynamics of Kolmogorov systems of competitive type under the telegraph noise. J. Differ. Equ. 250(1), 386–409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tang, X.H., Cao, D.M., Zou, X.F.: Global attractivity of positive periodic solution to periodic Lotka-Volterra competition systems with pure delay. J. Differ. Equ. 228(2), 580–610 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Huo, H.F.: Permanence and global attractivity of delay diffusive prey-predator systems with the michaelis-menten functional response. Comput. Math. Appl. 49(2–3), 407–416 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhao, J.D., Zhang, Z.C., Ju, J.: Necessary and sufficient conditions for permanence and extinction in a three dimensional competitive Lotka-Volterra system. Appl. Math. Comput. 230, 587–596 (2014)

    Article  MathSciNet  Google Scholar 

  6. Hou, Z.: On permanence of all subsystems of competitive Lotka-Volterra systems with delays. Nonlinear Anal. Real World Appl. 11(5), 4285–4301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balbus, J.: Attractivity and stability in the competitive systems of PDEs of Kolmogorov type. Appl. Math. Comput. 237, 69–76 (2014)

    Article  MathSciNet  Google Scholar 

  8. Shi, C.L., Li, Z., Chen, F.D.: Extinction in a nonautonomous Lotka-Volterra competitive system with infinite delay and feedback controls. Nonlinear Anal. Real World Appl. 13(5), 2214–2226 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, M., Wang, K.: Asymptotic behavior of a stochastic nonautonomous Lotka-Volterra competitive system with impulsive perturbations. Math. Comput. Model. 57(3–4), 909–925 (2013)

    Article  MATH  Google Scholar 

  10. Li, Y.K., Zhang, T.W., Ye, Y.: On the existence and stability of a unique almost periodic sequence solution in discrete predator-prey models with time delays. Appl. Math. Model. 35(11), 5448–5459 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Y.K., Yang, L., Wu, W.Q.: Almost periodic solutions for a class of discrete systems with Allee-effect. Appl. Math. 59(2), 191–203 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, C., Huang, N.J., O’Regan, D.: Almost periodic solutions for a Volterra model with mutual interference and Holling type III functional response. Appl. Math. Comput. 225, 503–511 (2013)

    Article  MathSciNet  Google Scholar 

  13. Li, Y.K., Ye, Y.: Multiple positive almost periodic solutions to an impulsive non-autonomous Lotka-Volterra predator-prey system with harvesting terms. Commun. Nonlinear Sci. Numer. Simul. 18(11), 3190–3201 (2013)

    Article  MathSciNet  Google Scholar 

  14. Huang, X., Cao, J.D., Ho, D.W.C.: Existence and attractivity of almost periodic solution for recurrent neural networks with unbounded delays and variable coefficients. Nonlinear Dyn. 45(3–4), 337–351 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, H., Shao, J.Y.: Almost periodic solutions for cellular neural networks with time-varying delays in leakage terms. Appl. Math. Comput. 219(24), 11471–11482 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Z., Han, M.A., Chen, F.D.: Almost periodic solutions of a discrete almost periodic logistic equation with delay. Appl. Math. Comput. 232, 743–751 (2014)

    Article  MathSciNet  Google Scholar 

  17. Zhang, H., Li, YiQ, Jing, B., Zhao, W.Z.: Global stability of almost periodic solution of multispecies mutualism system with time delays and impulsive effects. Appl. Math. Comput. 232, 1138–1150 (2014)

    Article  MathSciNet  Google Scholar 

  18. Yilmaz, E.: Almost periodic solutions of impulsive neural networks at non-prescribed moments of time. Neurocomputing 141, 148–152 (2014). in press

    Article  Google Scholar 

  19. Wang, C.: Almost periodic solutions of impulsive BAM neural networks with variable delays on time scales. Commun. Nonlinear Sci. Numer. Simul. 19(8), 2828–2842 (2014)

    Article  MathSciNet  Google Scholar 

  20. Gao, J., Wang, Q.R., Zhang, L.W.: Existence and stability of almost-periodic solutions for cellular neural networks with time-varying delays in leakage terms on time scales. Appl. Math. Comput. 237, 639–649 (2014)

    Article  MathSciNet  Google Scholar 

  21. Liu, B.W.: New results on the positive almost periodic solutions for a model of hematopoiesis. Nonlinear Anal. Real World Appl. 17, 252–264 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ding, H.S., Nieto, J.J.: A new approach for positive almost periodic solutions to a class of Nicholson\(^{,}\)s blowflies model. J. Comput. Appl. Math. 253, 249–254 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, X.J., Du, Z.J., Lv, Y.S.: Global asymptotic stability of almost periodic solution for a multispecies competition-predator system with time delays. Appl. Math. Comput. 219(9), 4908–4923 (2013)

    Article  MathSciNet  Google Scholar 

  24. Tan, R.H., Liu, W.F., Wang, Q.L., Liu, Z.J.: Uniformly asymptotic stability of almost periodic solution for a competitive system with impulsive perturbations. Adv. Differ. Equ. 2014(1), 2 (2014). doi:10.1186/1687-1847-2014-2

  25. Zhang, L.J., Shi, B.: Existence and global exponential stability of almost periodic solution for CNNs with variable coefficients and delays. J. Appl. Math. Comput. 28(1–2), 461–472 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou, H., Jiang, W.: Existence and stability of positive almost periodic solution for stochastic Lasota-Wazewska model. J. Appl. Math. Comput. 47(1–2), 61–71 (2015)

  27. Wang, Q., Dai, B.X.: Almost periodic solution for n-species Lotka-Volterra competitive system with delay and feedback controls. Appl. Math. Comput. 200(1), 133–146 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Q., Zhang, H.Y., Wang, Y.: Existence and stability of positive almost periodic solutions and periodic solutions for a logarithmic population model. Nonlinear Anal. Theory, Methods Appl. 72(12), 4384–4389 (2010)

    Article  MATH  Google Scholar 

  29. Wang, Q., Zhang, H.Y., Ding, M.M., Wang, Z.J.: Global attractivity of the almost periodic solution of a delay logistic population model with impulses. Nonlinear Anal. Theory, Methods Appl. 73(12), 3688–3697 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Abbas, S., Sen, M., Banerjee, M.: Almost periodic solution of a non-autonomous model of phytoplankton allelopathy. Nonlinear Dynamics 67(1), 203–214 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, C., Agarwal, R.P.: Weighted piecewise pseudo almost automorphic functions with applications to abstract impulsive \(\nabla \)-dynamic equations on time scales. Adv. Differ. Equ. 2014, 153 (2014). doi:10.1186/1687-1847-2014-153

    Article  Google Scholar 

  32. Wang, C.: Existence and exponential stability of piecewise mean-square almost periodic solutions for impulsive stochastic Nicholson\(^{,}\)s blowflies model on time scales. Appl. Math. Comput. 248, 101–112 (2014)

    Article  MathSciNet  Google Scholar 

  33. Wang, C., Agarwal, R.P.: Exponential dichotomies of impulsive dynamic systems with applications on time scales. Math. Methods Appl. Sci. 1–22 (2014). doi:10.1002/mma.3325

  34. He, M.X., Chen, F.D., Li, Z.: Almost periodic solution of an impulsive differential equation model of plankton allelopathy. Nonlinear Anal. Real World Appl. 11(4), 2296–2301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Maynard, J.: Models in Ecology. Cambridge University Press, Cambridge (1974)

    MATH  Google Scholar 

  36. Chattopadhyay, J.: Effect of toxic substances on a two-species competitive system. Ecol. Model. 84(1–3), 287–289 (1996)

    Article  Google Scholar 

  37. Agarwal, R.P.: Difference Equations and Inequalities: Theory, Method and Applications, Monographs and Textbooks in Pure and Applied Mathematics, vol. 228, 2nd edn. Marcel Dekker, New York, NY, USA (2000)

    Google Scholar 

  38. Li, Y.K., Lu, L.H.: Positive periodic solutions of discrete n-species food-chain systems. Appl. Math. Comput. 167(1), 324–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chen, X., Chen, F.D.: Stable periodic solution of a discrete periodic Lotka-Volterra competition system with a feedback control. Appl. Math. Comput. 181(2), 1446–1454 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Muroya, Y.: Persistence and global stability in Lotka-Volterra delay differential systems. Appl. Math. Lett. 17(7), 795–800 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Muroya, Y.: Partial survival and extinction of species in discrete nonautonomous Lotka-Volterra systems. Tokyo J. Math. 28(1), 189–200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang, X.T.: Uniform persistence and periodic solutions for a discrete predator-prey system with delays. J. Math. Anal. Appl. 316(1), 161–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Chen, F.D.: Permanence for the discrete mutualism model with time delays. Math. Comput. Model. 47(3–4), 431–435 (2008)

    Article  MATH  Google Scholar 

  44. Zhang, W.P., Zhu, D.M., Bi, P.: Multiple periodic positive solutions of a delayed discrete predator-prey system with type IV functional responses. Appl. Math. Lett. 20(10), 1031–1038 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Chen, Y.M., Zhou, Z.: Stable periodic of a discrete periodic Lotka-Volterra competition system. J. Math. Anal. Appl. 277(1), 358–366 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Li, X.P., Yang, W.S.: Permanence of a discrete model of mutualism with infinite deviating arguments. Discret. Dyn. Nat. Soc. 2010, 1–7 (2010). Article ID 931798

    Google Scholar 

  47. Li, X.P., Yang, W.S.: Permanence of a discrete predator-prey systems with Beddington-DeAngelis functional response and feedback controls. Discret. Dyn. Nat. Soc. 2008, 1–8 (2008). Article ID 149267

    Article  MATH  Google Scholar 

  48. Chen, F.D.: Permanence and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems. Appl. Math. Comput. 182(1), 3–12 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wu, D.Y.: Bifurcation analysis of a two-species competitive discrete model of plankton allelopathy. Adv. Differ. Equ. 2014, 1–10 (2014). doi:10.1186/1687-1847-2014-70

    Article  Google Scholar 

  50. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995)

    MATH  Google Scholar 

  51. He, C.Y.: Almost Periodic Differential Equations. Higher Education Press, Beijing (1992). (Chinese version)

    Google Scholar 

  52. Chen, F.D., Li, Z., Huang, Y.J.: Note on the permanence of a competitive system with infinite delay and feedback controls. Nonlinear Analysis: Real World Applications 8(2), 680–687 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Samoilenko, A.M., Perestyuk, N.A.: Perestyuk, Impulsive Differential Equations. World Scientific, Singapore (1995)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No.11261010, No.11201138 and No.11101126), Governor Foundation of Guizhou Province([2012]53) and Scientific Research Fund of Hunan Provincial Education Department (No. 12B034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Zhang, Q. & Li, P. Almost periodic solution analysis in a two-species competitive model of plankton alleopathy with impulses. J. Appl. Math. Comput. 50, 437–452 (2016). https://doi.org/10.1007/s12190-015-0878-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-015-0878-6

Keywords

Mathematics Subject Classification

Navigation