Skip to main content
Log in

On solutions of the generalized Stein quaternion matrix equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, some solution expressions to the quaternion matrix equation XAXF=BY are obtained. They are the further conclusions of the paper (Song et al. in Int. J. Comput. Math. 89:890–900, 2012). By applying of Kronecker map and complex representation of a quaternion matrix, the sufficient conditions for finding the solution have been established. At the end of the article, numerical examples show the applications of the proposed explicit solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cacavale, F., Siciliano, B.: Six-DOF impedance control based on angle/axis representations. IEEE Trans. Robot. Autom. 15, 289–300 (1999)

    Article  Google Scholar 

  2. Ji, P., Wu, H.T.: A closed-form forward kinematics solution for the 6–6p Stewart platform. IEEE Trans. Robot. Autom. 17, 522–526 (2001)

    Article  Google Scholar 

  3. Bihan, N.L., Sangwine, S.J.: Color image decomposition using quaternion singular value decomposition. In: IEEE International Conference on Visual Information Engineering of Quaternion (VIE), Guidford (2003)

  4. Davies, A.J., Mckella, B.H.: Observability of quaternionic quantum mechanics. Phys. Rev. A 46, 3671–3675 (1992)

    Article  Google Scholar 

  5. Farenick, D.R., Pidkowich, B.A.F.: The spectral theorem in quaternions. Linear Algebra Appl. 371, 75–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Moxey, C.E., Sangwine, S.J., Ell, T.A.: Hypercomplex correlation techniques for vector imagines. IEEE Trans. Signal Process. 51, 1177–1199 (2003)

    Article  MathSciNet  Google Scholar 

  7. Adler, S.L.: Scattering and decay theory for quaternionic quantum mechanics and structure of induced T nonconservation. Phys. Rev. D 37, 3654–3662 (1988)

    Article  MathSciNet  Google Scholar 

  8. Cheng, C.M., Cheok, K.L., Leong, I.T.: 3×3 pure imaginary quaternionic solutions of the Hurwitz matrix equations. Linear Multilinear Algebra 58, 863–874 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Horn, R.A., Zhang, F.Z.: A generalization of the complex Autonne-Takagi factorization to quaternion matrices. Linear Multilinear Algebra 23, 1–6 (2011)

    Google Scholar 

  10. Lin, C.Y.: A new necessary and sufficient condition for the consistency of a system of quaternion matrix equations. Southeast Asian Bull. Math. 31, 915–926 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Yuan, S.F., Wang, Q.W.: Two special kinds of least squares solutions for the quaternion matrix equation AXB+CXD=E. Electron. J. Linear Algebra 23, 257–274 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Yuan, S.F., Liao, A.P.: Least squares solution of the quaternion matrix equation \(X-A\widehat{X}B=C\) with the least norm. Linear Multilinear Algebra 59, 985–998 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yuan, S.F., Liao, A.P., Yao, G.Z.: The matrix nearness problem associated with the quaternion matrix equation AXA H+BYB H=C. J. Appl. Math. Comput. 37, 133–144 (2011)

    Article  MathSciNet  Google Scholar 

  14. Wang, Q.W., Yu, S.W., Xie, W.: Extreme ranks of real matrices in solution of the quaternion matrix equation AXB=C with applications. Algebra Colloq. 17, 345–360 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Wang, Q.W., Zhang, H.S., Yu, S.W.: On the real and pure imaginary solutions to the quaternion matrix equation AXB+CYD=E. Electron. J. Linear Algebra 17, 343–358 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Wang, Q.W., Van der Woude, J.W., Yu, S.W.: An equivalence canonical form of a matrix triplet over an arbitrary division ring with applications. Sci. China Math. 54, 907–924 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, Q.W., Van der Woude, J.W., Chang, H.X.: A system of real quaternion matrix equations with applications. Linear Algebra Appl. 431, 2291–2303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, M.H., Wei, M.S., Feng, Y.: An iterative algorithm for least squares problem in quaternionic quantum theory. Comput. Phys. Commun. 179, 203–207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, L.P.: The matrix equation AXBCXD=E over the quaternion field. Linear Algebra Appl. 234, 197–208 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Song, C.Q., Chen, G.L., Liu, Q.B.: Explicit solutions to the quaternion matrix equations XAXF=C and \(X-A\widetilde{X}F=C\). Int. J. Comput. Math. 89, 890–900 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, T.S., Wei, M.S.: On solution of the quaternion matrix equation \(X-A\widetilde {X}B=C\) and its application. Acta Math. Sin. 21, 483–490 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, A.G., Duan, G.R.: On solution to the generalized Sylvester matrix equation AV+BW=EVF. IET Control Theory Appl. 1(1), 402–408 (2007)

    Article  MathSciNet  Google Scholar 

  23. Kyrchiei, I.I.: Cramer’s rule for quaternionic system of linear equations. J. Math. Sci. 155, 839–858 (2008)

    Article  MathSciNet  Google Scholar 

  24. Zhang, F.Z.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Via, J., Ramirez, D., Santamaria, I.: Properness and widely linear processing of quaternion random vectors. IEEE Trans. Inf. Theory 56, 3502–3515 (2010)

    Article  MathSciNet  Google Scholar 

  26. Took, C.C., Mandic, D.P.: A quaternion widely linear adaptive filter. IEEE Trans. Signal Process. 58, 4427–4431 (2010)

    Article  MathSciNet  Google Scholar 

  27. Bihan, N.L., Mars, J.: Singular value decomposition of matrices: a new tool for vector-sensor signal processing. Signal Process. 84, 1177–1199 (2004)

    Article  MATH  Google Scholar 

  28. Lewis, F.L.: Further remarks on the Cayley-Hamilton theorem and Leverrier’s method for matrix pencil (sIA). IEEE Trans. Autom. Control 31(9), 869–870 (1986)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous reviewers and the editor for their helpful comments and suggestions which have helped them in improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Additional information

This project is granted financial support from NSFC (no. 11071079), NSFC (no. 10901056), Shanghai Science and Technology Commission Venus (11QA1402200), Zhejiang Nature Science Foundation (no. Y6110043) and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, C., Wang, X. & Zhang, X. On solutions of the generalized Stein quaternion matrix equation. J. Appl. Math. Comput. 43, 115–131 (2013). https://doi.org/10.1007/s12190-013-0655-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-013-0655-3

Keywords

Mathematics Subject Classification

Navigation