Skip to main content
Log in

Statistical and structural analysis of the appearance of prime numbers

  • Applied mathematics
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We examine the distribution of the ratio of addition to multiplication over standard atomic sets of integers. By analyzing the array of conversion ratios and selected sub-arrays, we prove that the reciprocal of the mean of the conversion ratio distribution converges to the prime-counting function π(n). We also show that the modified mean of the sub-array C 5, which is obtained from the array of conversion ratios by scaling and translation, converges to π(n) with an accuracy comparable to the Li-function. We go on to numerically show that the relative behaviors of L(n), \(1/H_{n}^{5}\) and Li(n) with respect to π(n) are similar, and that π(n)/L(n), \(\pi(n)/(1/H_{n}^{5})\) and π(n)/Li(n) provide approximations of competitive accuracy at the center of the distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. du Sautoy, M.: The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics. Harper Collins, New York (2003)

    MATH  Google Scholar 

  2. Goldstein, L.J.: A history of the prime number theorem. Am. Math. Mon. 80(6), 599–615 (1973)

    Article  MATH  Google Scholar 

  3. Legendre, A.M.: Essai sur la théorie des nombres, p. 394. Courcier, Paris (1808)

    Google Scholar 

  4. Gauss, C.F.: Werke, vol. II, pp. 444–447. Königliche Gesellschaft der Wissenschaften, Göttingen (1863)

    Google Scholar 

  5. Riemann, B.: Über die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsber. Preuss. Akad. Wiss., pp. 671–680 (1859)

  6. de la Vallée Poussin, C.-J.: Sur la fonction ζ(s) de Riemann et le nombre des nombres premiers inférieurs une limite donnée. Mem. Cour. Acad. Roy. Belg. 59, 1 (1899)

    Google Scholar 

  7. Littlewood, J.E.: Sur la distribution des nombres premiers. C. R. Acad. Sci. Paris 158, 1869–1872 (1914)

    MATH  Google Scholar 

  8. Keating, J.P., Snaith, N.C.: Random matrix theory and \(\zeta(\frac{1}{2} + i t)\). Commun. Math. Phys. 214, 57–89 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diaconis, P.: Patterns in eigenvalues: the 70th Josian Willard Gibbs lecture. Bull. Am. Math. Soc. 40(2), 155–178 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kontoyiannis, I.: Counting primes using entropy. IEEE Inf. Theory Soc. Newsl., June 2008, pp. 6–9 (2008)

  11. Bach, E., Klyve, D., Sorrenson, J.P.: Computing prime harmonic sums. Adv. Comput. Math. 5(4), 417–442 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwangil Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, S., Lee, G. & Kim, G. Statistical and structural analysis of the appearance of prime numbers. J. Appl. Math. Comput. 41, 283–299 (2013). https://doi.org/10.1007/s12190-012-0601-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-012-0601-9

Keywords

Mathematics Subject Classification (2010)

Navigation