Skip to main content
Log in

Existence of a critical allometry model parameter and its asymptotic expression

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we provide an interval of existence of critical mortality rate parameters M r and b and their asymptotic expressions in allometry survival model, in the absence of age-specific mortality data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stern, D.L., Emlen, D.J.: The developmental basis for allometry in insects. Development 126, 1091–1101 (1999)

    Google Scholar 

  2. Shingleton, A.W., Frankino, W.A., Flatt, T., Nijhout, H.F., Emlen, D.J.: Size and shape: the developmental regulation of static allometry in insects. BioEssays 29, 536–548 (2007)

    Article  Google Scholar 

  3. Troynikov, V.S.: Probability density functions useful for parametrization of heterogeneity in growth and allometry data. Bull. Math. Biol. 60, 1099–1122 (1998)

    Article  MATH  Google Scholar 

  4. Calder, W.A. III: Body size mortality, and longevity. J. Theor. Biol. 102, 135–144 (1983)

    Article  Google Scholar 

  5. Huxley, J.S., Teissier, G.: Terminologie et notation dans la description de la croissance relative. Comptes Rendus Séances Soc. Biol. Fil. 121, 934–937 (1936)

    Google Scholar 

  6. Huxley, J.: Problems of Relative Growth. Methuen, London (Dover, New York) (1972)

    Google Scholar 

  7. Kleiber, M.: The Fire of Life. Wiley, New York (1961)

    Google Scholar 

  8. Heidinger, R.C.: Stocking for sport fisheries enhancement. In: Kohler, C.C., Hubert, W.A. (eds.) Inland Fisheries Management in North America, 2nd edn., pp. 375–401. American Fisheries Society, Bethesda (1999)

    Google Scholar 

  9. Cowx, I.G.: Stocking strategies. Fisheries Manag. Ecol. 1, 15–31 (1994)

    Article  Google Scholar 

  10. Wahl, D.H., Stein, R.A., DeVries, D.R.: An ecological frame work for evaluating the success and effects of stocked fishes. Am. Fish. Soc. Symp. 15, 176–189 (1995)

    Google Scholar 

  11. Lorenzen, K.: Population dynamics and management of culture based fisheries. Fisheries Manag. Ecol. 2, 61–73 (1995)

    Article  Google Scholar 

  12. Peterson, I., Wroblewski, J.S.: Mortality rate of fishes in the pelagic ecosystem. Can. J. Fish. Aquat. Sci. 41, 1117–1120 (1984)

    Article  Google Scholar 

  13. Lorenzen, K.: The relationship between body weight and natural mortality in fish: a comparison of natural ecosystem and aquaculture. J. Fish Biol. 49, 627–647 (1996)

    Article  Google Scholar 

  14. Lorenzen, K.: Allometry of natural mortality as a basis for assessing optimal release size in fish-stocking programmes. Can. J. Fish. Aquat. Sci. 57, 2374–2381 (2000)

    Article  Google Scholar 

  15. Brooks, A., Lithgow, G.J., Johnson, T.E.: Mortality rates in a genetically heterogeneous population of Canenorhabditis elegans. Science 263, 668–671 (1994)

    Article  Google Scholar 

  16. Witten, M.: Reliability theoretic methods and aging: critical elements, hierarchies and longevity-interpreting biological survival curves. In: Woodhead, A., Blachett, A., Hollaender, A. (eds.) Molecular Biology of Aging. Plenum, New York (1985)

    Google Scholar 

  17. Lakshminarayanan, E.S., Pitchaimani, M.: Unique estimation of mortality rates in Gompertz survival model parameter. Appl. Math. Lett. 16, 211–219 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Finch, C.E., Pike, M.C., Witten, M.: Slow mortality rate accelerations during aging in some animals approximate that of humans. Science 249, 902–905 (1990)

    Article  Google Scholar 

  19. Pitchaimani, M., Eakin, T.: Unique estimation of Gompertz parameters with mortality deceleration rate. Math. Comput. Model. 47, 104–114 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Witten, M.: A return to time, cells, systems and aging: relational and reliability theoretic approaches to the study of senescence in living system. Mech. Aging Dev. 27, 323–340 (1984)

    Article  Google Scholar 

  21. Lawless, J.F.: Statistical Models and Methods for Lifetime Data. Wiley, New York (1982)

    MATH  Google Scholar 

  22. Witten, M., Satzer, W.: Gompertz model survival parameters: estimation and sensitivity. Appl. Math. Lett. 5, 7–12 (1992)

    Article  MATH  Google Scholar 

  23. Heppell, S.S., Pfister, C., de Kroon, H.: Elasticity analysis in population biology: methods and applications. Ecology 81, 606 (2000)

    Google Scholar 

  24. Fujiwara, M., Caswell, H.: Demography of the endangered North Atlantic right whale. Nature 414, 537–541 (2001)

    Article  Google Scholar 

  25. Lopez, A.: Problems in Stable Population Theory. Princeton University Press, Princeton (1961)

    Google Scholar 

  26. Tuljapurkar, S.D.: Population Dynamics in Variable Environments. Springer, New York (1990)

    MATH  Google Scholar 

  27. Pitchaimani, M.: Uniqueness of allometry model parameters. J. Appl. Math. Comput. 28, 485–500 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pitchaimani, M., Eakin, T.: Estimation and sensitivity of allometry model parameters. Int. J. Pure Appl. Math. 38(2), 249–268 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Pitchaimani, M.: Existence of allometry model parameters and their asymptotic formulae for a large population. J. Appl. Math. Comput. 35, 143–159 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, San Diego (1980)

    Google Scholar 

  31. Knight, C.G., Patel, M.N., Azevedo, R.B.R., Leroi, A.M.: A novel mode of ecdysozoan growth in Canenorhabditis elegans. Evolut. Develop. 4(1), 16–27 (2002)

    Article  Google Scholar 

  32. Alpatov, W.W.: Growth and variation of the larvae of Drosophila melanogaster. J. Exp. Zool. 52, 407–437 (1929)

    Article  Google Scholar 

  33. Rice, A.L.: Growth rules and the larvae of decapod crustaceans. J. Nat. Hist. 2, 525–530 (1968)

    Article  Google Scholar 

  34. Howells, R.E., Blainey, L.J.: The moulting process and the phenomenon of intermoult growth in the filarial nematode Brugia pahangi. J. Parasitol. 87, 493–505 (1983)

    Article  Google Scholar 

  35. Wilson, A.G.: Nematode growth patterns and the moulting cycle: the population growth profile. J. Zool. 179, 135–151 (1976)

    Google Scholar 

  36. Estevez, M., Attisano, L., Wrana, J.L., Albert, P.S., Massagu, J., Riddle, D.L.: The daf-4 gene encodes a bone morphogenetic protein-receptor controlling C. elegans Dauer larva development. Nature 365, 644–649 (1993)

    Article  Google Scholar 

  37. Johnston, L.A., Prober, D.A., Edgar, B.A., Eisenman, R.N., Gallant, P.: Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999)

    Article  Google Scholar 

  38. Oldham, S., Bohni, R., Stocker, H., Borgiolo, W., Hafen, E.: Genetic control of size in Drosophila. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 355, 945–952 (2000)

    Article  Google Scholar 

  39. Riddle, D.L., Blumenthal, T., Priess, J.R.: C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1997)

    Google Scholar 

  40. Byerly, L., Cassada, R.C., Russell, R.L.: The life cycle of the nematode Canenorhabditis elegans. Dev. Biol. 51, 23–33 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pitchaimani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitchaimani, M. Existence of a critical allometry model parameter and its asymptotic expression. J. Appl. Math. Comput. 41, 133–152 (2013). https://doi.org/10.1007/s12190-012-0599-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-012-0599-z

Keywords

Mathematics Subject Classification

Navigation