Skip to main content
Log in

B-convergence of split-step one-leg theta methods for stochastic differential equations

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

For stochastic differential equations (SDEs) with a superlinearly growing and globally one-sided Lipschitz continuous drift coefficient, the explicit schemes fail to converge strongly to the exact solution (see, Hutzenthaler, Jentzen and Kloeden in Proc. R. Soc. A, rspa.2010.0348v1–rspa.2010.0348, 2010). In this article a class of implicit methods, called split-step one-leg theta methods (SSOLTM), are introduced and are shown to be mean-square convergent for such SDEs if the method parameter satisfies \(\frac{1}{2}\leq\theta \leq1\). This result gives an extension of B-convergence from the theta method for deterministic ordinary differential equations (ODEs) to SSOLTM for SDEs. Furthermore, the optimal rate of convergence can be recovered if the drift coefficient behaves like a polynomial. Finally, numerical experiments are included to support our assertions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding, X., Ma, Q., Zhang, L.: Convergence and stability of the split-step θ-method for stochastic differential equations. Comput. Math. Appl. 60, 1310–1321 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Frank, R., Schneid, J., Ueberhuber, C.W.: The concept of B-convergence. SIAM J. Numer. Anal. 18, 753–780 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. J. Exp. Theor. Phys. 20, 1064 (1950)

    Google Scholar 

  4. Gyögy, I.: A note on Euler’s approximations. Potential Anal. 8, 205–216 (1998)

    Article  MathSciNet  Google Scholar 

  5. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  6. Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-type methods for non-linear stochastic differential equations. SIAM J. Numer. Anal. 40, 1041–1063 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Higham, D.J., Mao, X., Stuart, A.M.: Exponential mean-square stability of numerical solutions to stochastic differential equations. LMS J. Comput. Math. 6, 297–313 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Higham, D.J., Kloeden, P.E.: Numerical methods for nonlinear stochastic differential equations with jumps. Numer. Math. 101, 101–119 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Higham, D.J., Kloeden, P.E.: Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems. J. Comput. Appl. Math. 205, 949–956 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for SDEs with non-globally Lipschitz continuous coefficients. Proc. R. Soc. A 2010: rspa.2010.0348v1–rspa.2010.0348

  11. Hutzenthaler, M., Jentzen, A.: Convergence of the stochastic Euler scheme for locally Lipschitz Coefficients. arXiv:0912.2609v1 (2009)

  12. Jentzen, A., Kloeden, P.E., Neuenkirch, A.: Pathwise approximation of stochastic differential equations on domains: higher order convergence rates without global Lipschitz coefficients. Numer. Math. 112(1), 41–64 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    MATH  Google Scholar 

  14. Mao, X.: Stochastic Differential Equations and Applications. Horwood, New York (1997)

    MATH  Google Scholar 

  15. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004)

    MATH  Google Scholar 

  16. Milstein, G.N., Tretyakov, M.V.: Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients. SIAM J. Numer. Anal. 43, 1139–1154 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Szpruch, L.: Numerical approximations of nonlinear stochastic systems, PhD Thesis, University of Strathclyde (2010)

  18. Tan, J., Wang, H.: Convergence and stability of the split-step backward method for linear stochastic delay integro-differential equations. Math. Comput. Model. 51, 504–515 (2010)

    MATH  MathSciNet  Google Scholar 

  19. Hu, Y.: Semi-implicit Euler-Maruyama scheme for stiff stochastic equations. In: Koerezlioglu, H. (ed.) Stochastic Analysis and Related Topics V: The Silvri Workshop. Progr. Probab. 38, pp. 183–202. Birkhäuser, Boston (1996)

    Google Scholar 

  20. Wang, X., Gan, S.: Compensated stochastic theta methods for stochastic differential equations with jumps. Appl. Numer. Math. 60, 877–887 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojie Wang.

Additional information

This work was supported by NSF of China (No. 10871207) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. The first author is supported by Hunan Provincial Innovation Foundation For Postgraduate (No. CX2010B118) and would like to express his gratitude to Prof. P.E. Kloeden for his kind help during the author’s stay in University of Frankfurt am Main.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Gan, S. B-convergence of split-step one-leg theta methods for stochastic differential equations. J. Appl. Math. Comput. 38, 489–503 (2012). https://doi.org/10.1007/s12190-011-0492-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-011-0492-1

Keywords

Mathematics Subject Classification (2000)

Navigation