Skip to main content
Log in

Limitations of Richardson’s extrapolation for a high order fitted mesh method for self-adjoint singularly perturbed problems

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate whether we can accelerate the order of convergence of existing high order methods to solve some singularly perturbed two-point BVPs. To this end, we consider a fitted mesh finite difference method of Patidar (Appl. Math. Comput., 188:720–733, 2007) applied on a mesh of Shishkin type for the solution of self-adjoint problem which is ε-uniformly convergent of order four. We attempted to increase the order of convergence by Richardson’s extrapolation and discovered that this well-known convergence acceleration technique has some limitations. We observe that even though this extrapolation technique improves the accuracy slightly, it does not increase the rate of convergence which is originally four for the underlying method for the problem above. Theoretical investigations are demonstrated by some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreev, V.F., Popov, A.M.: Using Richardson’s method to construct high-order accurate adaptive grids. Comput. Math. Model. 10(3), 227–238 (1999)

    Article  MathSciNet  Google Scholar 

  2. Doolan, E.P., Miller, J.J.H., Schilders, W.H.A.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole Press, Dublin (1980)

    MATH  Google Scholar 

  3. Gartland, E.C.: Uniform high-order difference schemes for a singularly perturbed two-point boundary value problem. Math. Comput. 178(48), 551–564 (1987)

    MathSciNet  Google Scholar 

  4. Gaunt, J.A.: The deferred approach limit II: Interpenetrating lattices. Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 226, 350–361 (1927)

    Google Scholar 

  5. Grekov, L.D., Krasnikov, V.M.: FD method of arbitrary uniform order accuracy for solving singularly perturbed boundary problems for second-order ordinary differential equations. J. Math. Sci. 77(5), 3420–3425 (1995)

    Article  MathSciNet  Google Scholar 

  6. Herceg, D.: On the numerical solution of a singularly perturbed nonlocal problem. Zb. Rad. Prirod. Mat. Fak. Ser. Math. 20(2), 1–10 (1990)

    MathSciNet  Google Scholar 

  7. Joyce, D.C.: Survey of extrapolation process in numerical analysis. SIAM Rev. 13(4), 435–490 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  8. Keller, H.B.: Accurate difference methods for linear ordinary differential systems subject to linear constraints. SIAM J. Numer. Anal. 6, 8–30 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  9. Linss, T.: Error expansion for a first-order upwind difference scheme applied to a model convection-diffusion problem. IMA J. Numer. Anal. 24, 239–253 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  11. Natividad, M.C., Stynes, M.: Richardson extrapolation for a convection-diffusion problem using a Shishkin mesh. Appl. Numer. Math. 45, 315–329 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. O’Riordan, E., Stynes, M.: A uniform finite element method for a conservative singularly perturbed problem. J. Comput. Appl. Math. 18(2), 163–174 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Patidar, K.C.: High order fitted operator numerical method for self-adjoint singular perturbation problems. Appl. Math. Comput. 171(1), 547–566 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Patidar, K.C.: High order parameter uniform numerical method for singular perturbation problems. Appl. Math. Comput. 188, 720–733 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Richardson, L.F.: The deferred approach to the limit. I: Single lattice. Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 226, 299–349 (1927)

    Article  Google Scholar 

  16. Shishkin, G.I.: Robust novel high-order accurate numerical methods for singularly perturbed convection-diffusion problems. Math. Model. Anal. 10(4), 393–412 (2005)

    MATH  MathSciNet  Google Scholar 

  17. Shishkin, G.I., Shishkina, L.P.: The Richardson extrapolation technique for quasilinear parabolic singularly perturbed convection-diffusion equations. J. Phys. 55, 203–213 (2006)

    Google Scholar 

  18. Stynes, M., O’Riordan, E.: A finite element method for a singularly perturbed boundary value problem. Numer. Math. 50, 1–15 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Vulanović, R.: Higher-order monotone schemes for a nonlinear singular perturbation problem. Z. Angew. Math. Mech. 68(5), T428–T430 (1988)

    Article  Google Scholar 

  20. Vulanović, R.: A higher-order method for stationary shock problems. Appl. Math. Comput. 108, 139–152 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Vulanović, R.: A higher-order scheme for quasilinear boundary value problems with two small parameters. Computing 108, 139–152 (2000)

    MATH  Google Scholar 

  22. Wang, G.Y.: The application of integral equations to the numerical solution of nonlinear singular perturbation problems. J. Comput. Math. 12(1), 36–45 (1994)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailash C. Patidar.

Additional information

The research contained in this paper was supported by the South African National Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munyakazi, J.B., Patidar, K.C. Limitations of Richardson’s extrapolation for a high order fitted mesh method for self-adjoint singularly perturbed problems. J. Appl. Math. Comput. 32, 219–236 (2010). https://doi.org/10.1007/s12190-009-0245-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-009-0245-6

Keywords

Mathematics Subject Classification (2000)

Navigation