Skip to main content
Log in

An improved local convergence analysis for Newton–Steffensen-type method

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We provide a local convergence analysis for Newton–Steffensen-type algorithm for solving nonsmooth perturbed variational inclusions in Banach spaces. Under new center–conditions and the Aubin continuity property, we obtain the linear local convergence of Newton–Steffensen method. Our results compare favorably with related obtained in (Argyros and Hilout, 2007 submitted; Hilout in J. Math. Anal. Appl. 339:753–761, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Busquier, S.: Convergence and numerical analysis of a family of two–step Steffensen’s methods. Comput. Math. Appl. 49, 13–22 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amat, S., Busquier, S.: A two–step Steffensen’s method under modified convergence conditions. J. Math. Anal. Appl. 324, 1084–1092 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Argyros, I.K.: A new convergence theorem for Steffensen’s method on Banach spaces and applications. Southwest J. Pure Appl. Math. 1, 23–29 (1997)

    MATH  Google Scholar 

  4. Argyros, I.K.: Improved error bounds for Newton–like iterations under Chen–Yamamoto conditions. Appl. Math. Lett. 10, 97–100 (1997)

    Article  MATH  Google Scholar 

  5. Argyros, I.K.: On the convergence of a certain class of iterative procedures under relaxed conditions and applications. J. Comput. Appl. Math. 94, 13–21 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Argyros, I.K.: A unifying local–semilocal convergence analysis and applications for two–point Newton–like methods in Banach space. J. Math. Anal. Appl. 298, 374–397 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Argyros, I.K.: Approximate Solution of Operator Equations with Applications. World Scientific, New Jersey (2005)

    MATH  Google Scholar 

  8. Argyros, I.K.: A convergence analysis and applications for two–point Newton–like methods in Banach space under relaxed conditions. Aequations Math. 71, 124–148 (2006)

    Article  MATH  Google Scholar 

  9. Argyros, I.K.: An improved convergence analysis of a superquadratic method for solving generalized equations. Rev. Colombiana Math. 40, 65–73 (2006)

    Google Scholar 

  10. Argyros, I.K.: Computational Theory of Iterative Methods. Studies in Computational Mathematics, vol. 15. Elsevier, New York (2007)

    MATH  Google Scholar 

  11. Argyros, I.K., Hilout, S.: Steffensen methods for solving generalized equations. Serdica Math. J. 34, 1001–1012 (2008)

    MathSciNet  Google Scholar 

  12. Aubin, J.P., Frankowska, H.: Set–Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  13. Dontchev, A.L., Hager, W.W.: An inverse function theorem for set–valued maps. Proc. Am. Math. Soc. 121, 481–489 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Geoffroy, M.H., Hilout, S., Piétrus, A.: Stability of a cubically convergent method for generalized equations. Set–Valued Anal. 14, 41–54 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Hernández, M.A., Rubio, M.J.: Semilocal convergence of the secant method under mild convergence conditions of differentiability. J. Comput. Math. Appl. 44, 277–285 (2002)

    Article  MATH  Google Scholar 

  16. Hernández, M.A., Rubio, M.J.: ω–conditioned divided differences to solve nonlinear equations. Monografías del Semin. Matem. García de Galdeano 27, 323–330 (2003)

    Google Scholar 

  17. Hernández, M.A., Rubio, M.J.: A modification of Newton’s method for nondifferentiable equations. J. Comput. Appl. Math. 164/165, 323–330 (2004)

    Article  Google Scholar 

  18. Hilout, S.: Convergence analysis of a family of Steffensen–type method for generalized equations. J. Math. Anal. Appl. 339, 753–761 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  20. Mordukhovich, B.S.: Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis. Trans. Am. Math. Soc. 343, 609–657 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Robinson, S.M.: Generalized equations and their solutions, part I: basic theory. Math. Program. Study 10, 128–141 (1979)

    MATH  Google Scholar 

  22. Robinson, S.M.: Generalized equations and their solutions, part II: applications to nonlinear programming. Math. Program. Study 19, 200–221 (1982)

    MATH  Google Scholar 

  23. Rockafellar, R.T.: Lipschitzian properties of multifunctions. Nonlinear Anal. 9, 867–885 (1984)

    Article  MathSciNet  Google Scholar 

  24. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. A Series of Comprehensives Studies in Mathematics, vol. 317. Springer, Berlin (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis K. Argyros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyros, I.K., Hilout, S. An improved local convergence analysis for Newton–Steffensen-type method. J. Appl. Math. Comput. 32, 111–118 (2010). https://doi.org/10.1007/s12190-009-0236-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-009-0236-7

Keywords

Mathematics Subject Classification (2000)

Navigation