Skip to main content
Log in

Approximation of smooth convex bodies by circumscribed polytopes with respect to the surface area

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

Let K be a convex body with C 2 boundary in the Euclidean d-space. Following the work of L. Fejes Tóth, R. Vitale, R. Schneider, P.M. Gruber, S. Glasauer and M. Ludwig, best approximation of K by polytopes of restricted number of vertices or facets is well-understood if the approximation is with respect to the volume or the mean width. In this paper we consider the circumscribed polytope P (n) of n facets with minimal surface area, and present an asymptotic formula in terms of n for the difference of surface areas of P (n) and K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16, 78–96 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bonnesen, T., Fenchel, W.: Theory of Convex Bodies. BCS Assoc., Moscow (Idaho) (1987). Translated from German: Theorie der konvexen Körper. Springer (1934)

    MATH  Google Scholar 

  3. Böröczky, K. Jr.: Approximation of general smooth convex bodies. Adv. Math. 153, 325–341 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Böröczky, K.J., Csikós, B.: A new version of L. Fejes Tóth’s Moment Theorem. Stud. Sci. Hung. (accepted)

  5. Böröczky, K. Jr., Reitzner, M.: Approximation of smooth convex bodies by random circumscribed polytopes. Ann. Appl. Probab. 14, 239–273 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bronšteĭn, E.M., Ivanov, L.D.: The approximation of convex sets by polyhedra. Sib. Math. J. 16, 852–853 (1975) (Russian)

    Google Scholar 

  7. Falconer, K.J.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  8. Fejes Tóth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd edn. Springer, Berlin (1972)

    MATH  Google Scholar 

  9. Glasauer, S., Schneider, R.: Asymptotic approximation of smooth convex bodies by polytopes. Forum Math. 8, 363–377 (1996)

    MATH  MathSciNet  Google Scholar 

  10. Glasauer, S., Gruber, P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies III. Forum Math. 9, 383–404 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gruber, P.M.: Volume approximation of convex bodies by circumscribed polytopes. In: Applied Geometry and Discrete Mathematics. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, pp. 309–317. Am. Math. Soc., Providence (1991)

    Google Scholar 

  12. Gruber, P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies II. Forum Math. 5, 521–538 (1993)

    MATH  MathSciNet  Google Scholar 

  13. Gruber, P.M.: Aspects of approximation of convex bodies. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry A, pp. 319–345. North-Holland, Amsterdam (1993)

    Google Scholar 

  14. Gruber, P.M.: Comparisons of best and random approximation of convex bodies by polytopes. Rend. Circ. Mat. Palermo 50, 189–216 (1997)

    MathSciNet  Google Scholar 

  15. Gruber, P.M.: Optimale Quantisierung. Math. Semesterber. 49, 227–251 (2002)

    MATH  MathSciNet  Google Scholar 

  16. Gruber, P.M.: Error of asymptotic formulae for volume approximation of convex bodies in E d. Monatsh. Math. 135, 279–304 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gruber, P.M.: Optimum quantization and its applications. Adv. Math. 186, 456–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gruber, P.M.: Convex and Discrete Geometry. Springer, Berlin (2007)

    MATH  Google Scholar 

  19. Leichtweiß, K.: Affine Geometry of Convex Bodies. Johann Ambrosius Barth Verlag, Heidelberg (1998)

    MATH  Google Scholar 

  20. Ludwig, M.: Asymptotic approximation of smooth convex bodies by general polytopes. Mathematika 46, 103–125 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. McClure, D.E., Vitale, R.A.: Polygonal approximation of plane convex bodies. J. Math. Anal. Appl. 51, 326–358 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rogers, C.A.: Hausdorff Measure. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  23. Schneider, R.: Convex Bodies—The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  24. Zador, P.L.: Asymptotic quantization error of continuous signals and their quantization dimension. Trans. Inf. Theory 28, 139–149 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Károly J. Böröczky.

Additional information

Communicated by V. Cortés.

K.J. Böröczky supported by OTKA grants K 068398 and 075016, and by the EU Marie Curie TOK project DiscConvGeo.

B. Csikós supported by OTKA grants NK 067867 and K 072537.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böröczky, K.J., Csikós, B. Approximation of smooth convex bodies by circumscribed polytopes with respect to the surface area. Abh. Math. Semin. Univ. Hambg. 79, 229–264 (2009). https://doi.org/10.1007/s12188-009-0023-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-009-0023-2

Keywords

Mathematics Subject Classification (2000)

Navigation