Skip to main content
Log in

Bispecific antibodies for multiple myeloma: past, present and future

  • Progress in Hematology
  • Novel treatment strategies for hematological malignancies in the era of immune therapy
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Despite the development of various therapeutic agents, multiple myeloma remains incurable. Recently, T-cell redirected immunotherapy has become a promising strategy for the treatment of refractory myeloma. Clinical trials using chimeric antigen receptor (CAR)-T cells and bispecific antibodies have demonstrated successful anti-myeloma responses in triple-class-refractory patients. However, unique and unwanted immune effects associated with on-target/off-target reactivity of activated immune cells need to be considered and properly managed. This review summarizes recent advances in bispecific antibodies for the treatment of refractory myeloma. It outlines the history of their development, along with a discussion of their mechanisms of action and their current and potential future role in myeloma therapy. As more evidence emerges to inform the timing of CAR-T-cell therapy, the results of clinical trials and off-the-shelf nature of bispecifics also suggest the timing of their treatment. These findings will promote further development and application of bispecifics for refractory myeloma in combination with other appropriate agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson KC. Progress and paradigms in multiple myeloma. Clin Cancer Res. 2016;22(22):5419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.

    Article  PubMed  Google Scholar 

  3. Rasche L, Chavan SS, Stephens OW, Patel PH, Tytarenko R, Ashby C, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun. 2017;8(1):268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ledergor G, Weiner A, Zada M, Wang SY, Cohen YC, Gatt ME, et al. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nat Med. 2018;24(12):1867–76.

    Article  CAS  PubMed  Google Scholar 

  5. Holstein SA, Grant SJ, Wildes TM. Chimeric antigen receptor T-cell and bispecific antibody therapy in multiple myeloma: moving into the future. J Clin Oncol. 2023;41(27):4416–29.

    Article  CAS  PubMed  Google Scholar 

  6. Ludwig H, Terpos E, van de Donk N, Mateos MV, Moreau P, Dimopoulos MA, et al. Prevention and management of adverse events during treatment with bispecific antibodies and CAR T cells in multiple myeloma: a consensus report of the European Myeloma Network. Lancet Oncol. 2023;24(6):e255–69.

    Article  CAS  PubMed  Google Scholar 

  7. Nisonoff A, Rivers MM. Recombination of a mixture of univalent antibody fragments of different specificity. Arch Biochem Biophys. 1961;93:460–2.

    Article  CAS  PubMed  Google Scholar 

  8. Milstein C, Cuello AC. Hybrid hybridomas and their use in immunohistochemistry. Nature. 1983;305(5934):537–40.

    Article  CAS  PubMed  Google Scholar 

  9. Mack M, Riethmuller G, Kufer P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc Natl Acad Sci USA. 1995;92(15):7021–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321(5891):974–7.

    Article  CAS  PubMed  Google Scholar 

  11. Kantarjian H, Stein A, Gokbuget N, Fielding AK, Schuh AC, Ribera JM, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blanco B, Dominguez-Alonso C, Alvarez-Vallina L. Bispecific immunomodulatory antibodies for cancer immunotherapy. Clin Cancer Res. 2021;27(20):5457–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borlak J, Langer F, Spanel R, Schondorfer G, Dittrich C. Immune-mediated liver injury of the cancer therapeutic antibody catumaxomab targeting EpCAM, CD3 and Fcgamma receptors. Oncotarget. 2016;7(19):28059–74.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Firestone R, Lesokhin AM, Usmani SZ. An Embarrassment of riches: three FDA-approved bispecific antibodies for relapsed refractory multiple myeloma. Blood Cancer Discov. 2023;4(6):433–6.

    Article  CAS  PubMed  Google Scholar 

  15. O’Neill C, van de Donk N. T-cell redirecting bispecific antibodies in multiple myeloma: current landscape and future directions. Eur J Haematol. 2023;4(3):811–22.

    CAS  Google Scholar 

  16. Ravi G, Costa LJ. Bispecific T-cell engagers for treatment of multiple myeloma. Am J Hematol. 2023;98(Suppl 2):S13–21.

    CAS  PubMed  Google Scholar 

  17. Swan D, Murphy P, Glavey S, Quinn J. Bispecific antibodies in multiple myeloma: opportunities to enhance efficacy and improve safety. Cancers (Basel). 2023;15(6):1819.

    Article  CAS  PubMed  Google Scholar 

  18. Topp MS, Duell J, Zugmaier G, Attal M, Moreau P, Langer C, et al. Anti-B-cell maturation antigen BiTE molecule AMG 420 induces responses in multiple myeloma. J Clin Oncol. 2020;38(8):775–83.

    Article  CAS  PubMed  Google Scholar 

  19. Harrison SJ, Minnema MC, Lee HC, Spencer A, Kapoor P, Madduri D, et al. A phase 1 first in human (FIH) study of AMG 701, an anti-B-cell maturation antigen (BCMA) half-life extended (HLE) BiTE® (bispecific T-cell engager) molecule, in relapsed/refractory (RR) multiple myeloma (MM). Blood. 2020;136(Supplement 1):28–9.

    Article  Google Scholar 

  20. Usmani SZ, Garfall AL, van de Donk N, Nahi H, San-Miguel JF, Oriol A, et al. Teclistamab, a B-cell maturation antigen x CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): a multicentre, open-label, single-arm, phase 1 study. Lancet. 2021;398(10301):665–74.

    Article  CAS  PubMed  Google Scholar 

  21. Moreau P, Garfall AL, van de Donk N, Nahi H, San-Miguel JF, Oriol A, et al. Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med. 2022;387(6):495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bahlis NJ, Costello CL, Raje NS, Levy MY, Dholaria B, Solh M, et al. Elranatamab in relapsed or refractory multiple myeloma: the MagnetisMM-1 phase 1 trial. Nat Med. 2023;29(10):2570–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lesokhin AM, Tomasson MH, Arnulf B, Bahlis NJ, Miles Prince H, Niesvizky R, et al. Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results. Nat Med. 2023;29(9):2259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D’Souza A, Shah N, Rodriguez C, Voorhees PM, Weisel K, Bueno OF, et al. A phase I first-in-human study of ABBV-383, a B-cell maturation antigen x CD3 bispecific T-cell redirecting antibody, in patients with relapsed/refractory multiple myeloma. J Clin Oncol. 2022;40(31):3576–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vij R, Kumar SK, D’Souza A, Mckay JT, Voorhees PM, Chung A, et al. Updated safety and efficacy results of Abbv-383, a BCMA x CD3 bispecific T-cell redirecting antibody, in a first-in-human phase 1 study in patients with relapsed/refractory multiple myeloma. Blood. 2023;142(Supplement 1):3378–80.

    Article  Google Scholar 

  26. Bar N, Mateos MV, Ribas P, Hansson M, Paris L, Hofmeister CC, et al. Alnuctamab (ALNUC; BMS-986349; CC-93269), a 2+1 B-cell maturation antigen (BCMA) × CD3 T-cell engager (TCE), administered subcutaneously (SC) in patients (Pts) with relapsed/refractory multiple myeloma (RRMM): updated results from a phase 1 first-in-human clinical study. Blood. 2023;142(Supplement 1):2011–4.

    Article  Google Scholar 

  27. Hans C, Lee NB, Richter JR, Dhodapkar MV, Hoffman JE, Suvannasankha A, et al. LINKER-MM1 study: Linvoseltamab (REGN5458) in patients with relapsed/refractory multiple myeloma. J Clin Oncol. 2023;41(Supplement):8006.

    Google Scholar 

  28. Chari A, Minnema MC, Berdeja JG, Oriol A, van de Donk N, Rodriguez-Otero P, et al. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. N Engl J Med. 2022;387(24):2232–44.

    Article  CAS  PubMed  Google Scholar 

  29. Trudel S, Krishnan AY, Fonseca R, Spencer A, Berdeja JG, Lesokhin A, et al. Cevostamab monotherapy continues to show clinically meaningful activity and manageable safety in patients with heavily pre-treated relapsed/refractory multiple myeloma (RRMM): updated results from an ongoing phase I study. Blood. 2021;138(Supplement 1):157–60.

    Article  Google Scholar 

  30. Correnti CE, Laszlo GS, Schueren WJ, Godwin CD, Bandaranayake A, Busch MA, et al. Simultaneous multiple interaction T-cell engaging (SMITE) bispecific antibodies overcome bispecific T-cell engager (BiTE) resistance via CD28 co-stimulation. Leukemia. 2018;32(5):1239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nelson MH, Fritzell S, Miller R, Werchau D, Van Citters D, Nilsson A, et al. The bispecific tumor antigen-conditional 4–1BB x 5T4 agonist, ALGAPV-527, mediates strong T-cell activation and potent antitumor activity in preclinical studies. Mol Cancer Ther. 2023;22(1):89–101.

    Article  CAS  PubMed  Google Scholar 

  32. Muik A, Adams HC 3rd, Gieseke F, Altintas I, Schoedel KB, Blum JM, et al. DuoBody-CD40x4-1BB induces dendritic-cell maturation and enhances T-cell activation through conditional CD40 and 4–1BB agonist activity. J Immunother Cancer. 2022;10(6):e004322.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Geuijen C, Tacken P, Wang LC, Klooster R, van Loo PF, Zhou J, et al. A human CD137xPD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade. Nat Commun. 2021;12(1):4445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peper-Gabriel JK, Pavlidou M, Pattarini L, Morales-Kastresana A, Jaquin TJ, Gallou C, et al. The PD-L1/4-1BB bispecific antibody-anticalin fusion protein PRS-344/S095012 elicits strong T-cell stimulation in a tumor-localized manner. Clin Cancer Res. 2022;28(15):3387–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Z, Xu X, Liu H, Zhao X, Yang C, Fu R. Immune checkpoint inhibitors for multiple myeloma immunotherapy. Exp Hematol Oncol. 2023;12(1):99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Konishi T, Ochi T, Maruta M, Tanimoto K, Miyazaki Y, Iwamoto C, et al. Reinforced antimyeloma therapy via dual-lymphoid activation mediated by a panel of antibodies armed with bridging-BiTE. Blood. 2023;142(21):1789–805.

    Article  CAS  PubMed  Google Scholar 

  37. Lucca LE. Multiple myeloma treatment: one bridge closer. Blood. 2023;142(21):1763–4.

    Article  CAS  PubMed  Google Scholar 

  38. Pouleau B, Estoppey C, Suere P, Nallet E, Laurendon A, Monney T, et al. Preclinical characterization of ISB 1342, a CD38 x CD3 T-cell engager for relapsed/refractory multiple myeloma. Blood. 2023;142(3):260–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xie B, Li Z, Zhou J, Wang W. Current status and perspectives of dual-targeting chimeric antigen receptor T-cell therapy for the treatment of hematological malignancies. Cancers (Basel). 2022;14(13):3230.

    Article  CAS  PubMed  Google Scholar 

  40. Pihlgren M, Carretero L, Estoppey C, Drake A, Pais D, Loyau J, et al. ISB 2001, a first-in-class trispecific BCMA and CD38 T cell engager designed to overcome mechanisms of escape from treatments for multiple myeloma by targeting two antigens. Blood. 2022;140(Supplement 1):858–9.

    Article  Google Scholar 

  41. Sia H, Garton A, Wolff E, Shah T, Charpentier C, Duchesne D, et al. A phase 1, first-in-human, dose escalation and dose-expansion study of a BCMAxCD38xCD3 targeting trispecific antibody ISB 2001 in subjects with relapsed/refractory multiple myeloma. Blood. 2023;142(Supplement 1):3396–7.

    Article  Google Scholar 

  42. Wu L, Seung E, Xu L, Rao E, Lord DM, Wei RR, et al. Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation. Nat Cancer. 2020;1(1):86–98.

    Article  CAS  PubMed  Google Scholar 

  43. Ross T, Wingert S, Haneke T, Klausz K, Otte AK, Schub N, et al. Preclinical characterization of AFM26, a novel B cell maturation antigen (BCMA)-directed tetravalent bispecific antibody for high affinity retargeting of NK cells against myeloma. Blood. 2018;132(Supplement 1):1927.

    Article  Google Scholar 

  44. Plesner T, Harrison SJ, Quach H, Lee C, Bryant A, Vangsted A, et al. Phase I study of safety and pharmacokinetics of RO7297089, an anti-BCMA/CD16a bispecific antibody, in patients with relapsed, refractory multiple myeloma. Clin Hematol Int. 2023;5(1):43–51.

    Article  PubMed  PubMed Central  Google Scholar 

  45. More S, Corvatta L, Manieri VM, Morsia E, Poloni A, Offidani M. Novel immunotherapies and combinations: the future landscape of multiple myeloma treatment. Pharmaceuticals (Basel). 2023;16(11):1628.

    Article  CAS  PubMed  Google Scholar 

  46. Chen H, Yu T, Lin L, Xing L, Cho SF, Wen K, et al. Gamma-secretase inhibitors augment efficacy of BCMA-targeting bispecific antibodies against multiple myeloma cells without impairing T-cell activation and differentiation. Blood Cancer J. 2022;12(8):118.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 2016;128(3):384–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meermeier EW, Welsh SJ, Sharik ME, Du MT, Garbitt VM, Riggs DL, et al. Tumor burden limits bispecific antibody efficacy through T cell exhaustion averted by concurrent cytotoxic therapy. Blood Cancer Discov. 2021;2(4):354–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cohen YC, Gatt ME, Sebag M, Kim K, Min CK, Oriol A, et al. First results from the RedirecTT-1 study with teclistamab (tec) + talquetamab (tal) si- multaneously targeting BCMA and GPRC5D in patients (pts) with relapsed/refractory multiple myeloma (RRMM). J Clin Oncol. 2023;41(Supplement):abstract8002.

    Article  Google Scholar 

  50. Cohen AD, Mateos MV, Cohen YC, Rodriguez-Otero P, Paiva B, van de Donk N, et al. Efficacy and safety of cilta-cel in patients with progressive multiple myeloma after exposure to other BCMA-targeting agents. Blood. 2023;141(3):219–30.

    Article  CAS  PubMed  Google Scholar 

  51. Mouhieddine TH, Van Oekelen O, Melnekoff DT, Li J, Ghodke-Puranik Y, Lancman G, et al. Sequencing T-cell redirection therapies leads to deep and durable responses in relapsed/refractory myeloma patients. Blood Adv. 2023;7(6):1056–64.

    Article  CAS  PubMed  Google Scholar 

  52. Baguet C, Larghero J, Mebarki M. Early predictive factors of failure in autologous CAR T-cell manufacturing and/or efficacy in hematologic malignancies. Blood Adv. 2024;8(2):337–42.

    Article  CAS  PubMed  Google Scholar 

  53. Locke FL, Rossi JM, Neelapu SS, Jacobson CA, Miklos DB, Ghobadi A, et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020;4(19):4898–911.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ghassemi S, Durgin JS, Nunez-Cruz S, Patel J, Leferovich J, Pinzone M, et al. Rapid manufacturing of non-activated potent CAR T cells. Nat Biomed Eng. 2022;6(2):118–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arcangeli S, Bove C, Mezzanotte C, Camisa B, Falcone L, Manfredi F, et al. CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. J Clin Invest. 2022;132(12):e150807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dickinson MJ, Barba P, Jager U, Shah NN, Blaise D, Briones J, et al. A novel autologous CAR-T therapy, YTB323, with preserved T-cell stemness shows enhanced CAR T-cell efficacy in preclinical and early clinical development. Cancer Discov. 2023;13(9):1982–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Philipp N, Kazerani M, Nicholls A, Vick B, Wulf J, Straub T, et al. T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood. 2022;140(10):1104–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Friedrich MJ, Neri P, Kehl N, Michel J, Steiger S, Kilian M, et al. The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients. Cancer Cell. 2023;41(4):711–25.

    Article  CAS  PubMed  Google Scholar 

  59. Cohen AD, Susanibar-Adaniya SP, Vogl DT, Garfall AL, Waxman A, Zubka D, et al. Sequential T-cell engagement for myeloma (“STEM”) trial: a phase 2 study of cevostamab consolidation following BCMA CAR T cell therapy. Blood. 2023;142(Supplement 1):3389–91.

    Article  Google Scholar 

  60. Blache U, Popp G, Dunkel A, Koehl U, Fricke S. Potential solutions for manufacture of CAR T cells in cancer immunotherapy. Nat Commun. 2022;13(1):5225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Qasim W. Genome-edited allogeneic donor “universal” chimeric antigen receptor T cells. Blood. 2023;141(8):835–45.

    Article  CAS  PubMed  Google Scholar 

  62. Cichocki F, van der Stegen SJC, Miller JS. Engineered and banked iPSCs for advanced NK- and T-cell immunotherapies. Blood. 2023;141(8):846–55.

    Article  CAS  PubMed  Google Scholar 

  63. Berrien-Elliott MM, Jacobs MT, Fehniger TA. Allogeneic natural killer cell therapy. Blood. 2023;141(8):856–68.

    Article  CAS  PubMed  Google Scholar 

  64. Karahan ZS, Aras M, Sutlu T. TCR-NK cells: a novel source for adoptive immunotherapy of cancer. Turk J Haematol. 2023;40(1):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019;25(4):625–38.

    Article  CAS  PubMed  Google Scholar 

  66. Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24(6):731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Leclercq G, Haegel H, Schneider A, Giusti AM, Marrer-Berger E, Boetsch C, et al. Src/lck inhibitor dasatinib reversibly switches off cytokine release and T cell cytotoxicity following stimulation with T cell bispecific antibodies. J Immunother Cancer. 2021;9(7):e002582.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lancman G, Sastow DL, Cho HJ, Jagannath S, Madduri D, Parekh SS, et al. Bispecific antibodies in multiple myeloma: present and future. Blood Cancer Discov. 2021;2(5):423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) from the JSPS, Grant Number 18K08331 (to T.O.), the Takeda Science Foundation (to T.O.), the SENSHIN Medical Research Foundation (to T.O.), and the Center for Clinical and Translational Research of Kyushu University Hospital (to T.O.).

Funding

This study was funded by Japan Society for the Promotion of Science, 18K08331, Toshiki Ochi, Takeda Science Foundation, SENSHIN Medical Research Foundation, Center for Clinical and Translational Research of Kyushu University Hospital.

Author information

Authors and Affiliations

Authors

Contributions

T.O., T.K., and K.T. wrote and edited the manuscript.

Corresponding author

Correspondence to Toshiki Ochi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochi, T., Konishi, T. & Takenaka, K. Bispecific antibodies for multiple myeloma: past, present and future. Int J Hematol (2024). https://doi.org/10.1007/s12185-024-03766-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12185-024-03766-4

Keyword

Navigation