Skip to main content

Advertisement

Log in

Antibody-Based Treatment Approaches in Multiple Myeloma

  • Multiple Myeloma (P Kapoor, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The field of multiple myeloma treatment has entered a new era with antibody-based approaches in clinical practice. In this review, we focus on the clinical approaches of utilizing antibody-based modality, specifically monoclonal antibodies, antibody-drug conjugates, and bispecific T-cell antibodies in the treatment of multiple myeloma.

Recent Findings

Three monoclonal antibodies (daratumumab, isatuximab, elotuzumab) and one anti-BCMA (B-cell maturation antigen) antibody-drug conjugate (belantamab mafodotin) have been approved by the FDA in the last 5 years for the treatment of multiple myeloma. There are many ongoing clinical trials using novel targets and constructs, including bispecific antibodies against BCMA, GPRC5D, and FCRH5. In addition to exploring efficacy, there are ongoing efforts to overcome the resistance to therapy.

Summary

Antibody-based therapy has improved the outcomes of patients with multiple myeloma and has been incorporated in the standard of care. We expect to see novel targets and constructs that can achieve a deeper and more durable response while minimizing toxicity, as well as better strategies for toxicity management for existing agents. We also expect that antibody-based strategies will be used in earlier lines of therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Surveillance, E., and End results (SEER) Program, https://seer.cancer.gov/statfacts/html/mulmy.html. Accessed on October 15, 2020.

  2. van de Donk NWCJ, Richardson PG, Malavasi F. CD38 antibodies in multiple myeloma: back to the future. Blood. 2018;131(1):13–29.

    Article  PubMed  CAS  Google Scholar 

  3. Hogan KA, Chini CCS, Chini EN. The multi-faceted ecto-enzyme CD38: roles in immunomodulation, cancer, aging, and metabolic diseases. Front Immunol. 2019;10:1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van de Donk NW, et al. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol Rev. 2016;270(1):95–112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Krejcik J, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 2016;128(3):384–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lokhorst HM, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373(13):1207–19.

    Article  CAS  PubMed  Google Scholar 

  7. Lonial S, et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet. 2016;387(10027):1551–60.

    Article  CAS  PubMed  Google Scholar 

  8. Usmani SZ, et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. Blood. 2016;128(1):37–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. •• Dimopoulos MA, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(14):1319–31 This study was the first trial to incorporate daratumumab into IMiD-based therapy and showed efficacy.

    Article  CAS  PubMed  Google Scholar 

  10. Palumbo A, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(8):754–66.

    Article  CAS  PubMed  Google Scholar 

  11. Dimopoulos M, et al. Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): results from a randomised, multicentre, open-label, phase 3 study. Lancet. 2020;396(10245):186–97.

    Article  CAS  PubMed  Google Scholar 

  12. Chari A, et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood. 2017;130(8):974–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dimopoulos MA, et al. Apollo: phase 3 randomized study of subcutaneous daratumumab plus pomalidomide and dexamethasone (D-Pd) versus pomalidomide and dexamethasone (Pd) alone in patients (Pts) with relapsed/refractory multiple myeloma (RRMM). Blood. 2020;136(Supplement 1):5–6.

    Article  Google Scholar 

  14. Mateos MV, et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N Engl J Med. 2018;378(6):518–28.

    Article  CAS  PubMed  Google Scholar 

  15. •• Facon T, et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N Engl J Med. 2019;380(22):2104–15 This trial demonstrated addition of daratumumab to Rd improved PFS in upfront setting in transplant-ineligible patients.

    Article  CAS  PubMed  Google Scholar 

  16. •• Moreau P, et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet. 2019;394(10192):29–38 This trial showed efficacy of incorporating daratumumab to VTd regimen in newly diagnosed transplant-eligible patients.

    Article  CAS  PubMed  Google Scholar 

  17. •• Voorhees PM, et al. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: the GRIFFIN trial. Blood. 2020;136(8):936–45 This study added daratumumab to RVd regimen in newly diagnosed transplant-eligible patients and showed improved sCR rate as well as MRD negativity rate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barr H, et al. Ninety-minute daratumumab infusion is safe in multiple myeloma. Leukemia. 2018;32(11):2495–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lombardi J, et al. Safety of ninety-minute daratumumab infusion. J Oncol Pharm Pract. 2020;0(0):1–6.

  20. Mateos MV, Usmani SZ. Subcutaneous versus intravenous daratumumab in multiple myeloma - authors' reply. Lancet Haematol. 2020;7(8):e559.

    Article  PubMed  Google Scholar 

  21. United States Food and Drug Administration. Darzalex: label information. 2018. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761036s013lbl.pdf Accessed on Oct 13, 2020.

  22. Murphy MF, et al. Interference of new drugs with compatibility testing for blood transfusion. N Engl J Med. 2016;375(3):295–6.

    Article  PubMed  Google Scholar 

  23. Chapuy CI, et al. International validation of a dithiothreitol (DTT)-based method to resolve the daratumumab interference with blood compatibility testing. Transfusion. 2016;56(12):2964–72.

    Article  CAS  PubMed  Google Scholar 

  24. van de Donk NW, et al. Interference of daratumumab in monitoring multiple myeloma patients using serum immunofixation electrophoresis can be abrogated using the daratumumab IFE reflex assay (DIRA). Clin Chem Lab Med. 2016;54(6):1105–9.

    PubMed  Google Scholar 

  25. Mills JR, et al. A universal solution for eliminating false positives in myeloma due to therapeutic monoclonal antibody interference. Blood. 2018;132(6):670–2.

    Article  CAS  PubMed  Google Scholar 

  26. Flores-Montero J, et al. Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31(10):2094–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moreno L, et al. The mechanism of action of the anti-CD38 monoclonal antibody isatuximab in multiple myeloma. Clin Cancer Res. 2019;25(10):3176–87.

    Article  CAS  PubMed  Google Scholar 

  28. Attal M, et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet. 2019;394(10214):2096–107.

    Article  CAS  PubMed  Google Scholar 

  29. Mikhael J, et al. A phase 1b study of isatuximab plus pomalidomide/dexamethasone in relapsed/refractory multiple myeloma. Blood. 2019;134(2):123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin T, et al. Depth of response and response kinetics of isatuximab plus carfilzomib and dexamethasone in relapsed multiple myeloma: Ikema interim analysis. Blood. 2020;136(Supplement 1):7–8.

    Article  Google Scholar 

  31. Hsi ED, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14(9):2775–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tai YT, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112(4):1329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Veillette A, Guo H. CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Crit Rev Oncol Hematol. 2013;88(1):168–77.

    Article  PubMed  Google Scholar 

  34. Zonder JA, et al. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012;120(3):552–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lonial S, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373(7):621–31.

    Article  CAS  PubMed  Google Scholar 

  36. Dimopoulos MA, et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N Engl J Med. 2018;379(19):1811–22.

    Article  CAS  PubMed  Google Scholar 

  37. Jakubowiak A, et al. Randomized phase 2 study: elotuzumab plus bortezomib/dexamethasone vs bortezomib/dexamethasone for relapsed/refractory MM. Blood. 2016;127(23):2833–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bristol Myers Squibb Reports Primary Results of ELOQUENT-1 Study evaluating empliciti (elotuzumab) plus revlimid (lenalidomide) and dexamethasone in patients with newly diagnosed, untreated multiple myeloma (https://bit.ly/3cJ17P9) Accessed on October 15, 2020.

  39. Usmani SZ, et al. Bortezomib, lenalidomide, and dexamethasone with or without elotuzumab in patients with untreated, high-risk multiple myeloma (SWOG-1211): primary analysis of a randomised, phase 2 trial. Lancet Haematol. 2021;8(1):e45–54.

    Article  PubMed  Google Scholar 

  40. Birrer MJ, et al. Antibody-drug conjugate-based therapeutics: state of the science. J Natl Cancer Inst. 2019;111(6):538–49.

    Article  PubMed  CAS  Google Scholar 

  41. Madry C, et al. The characterization of murine BCMA gene defines it as a new member of the tumor necrosis factor receptor superfamily. Int Immunol. 1998;10(11):1693–702.

    Article  CAS  PubMed  Google Scholar 

  42. Tai YT, Anderson KC. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy. 2015;7(11):1187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Claudio JO, et al. A molecular compendium of genes expressed in multiple myeloma. Blood. 2002;100(6):2175–86.

    Article  CAS  PubMed  Google Scholar 

  44. Tarte K, et al. Gene expression profiling of plasma cells and plasmablasts: toward a better understanding of the late stages of B-cell differentiation. Blood. 2003;102(2):592–600.

    Article  CAS  PubMed  Google Scholar 

  45. Novak AJ, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 2004;103(2):689–94.

    Article  CAS  PubMed  Google Scholar 

  46. Trudel S, et al. Targeting B-cell maturation antigen with GSK2857916 antibody-drug conjugate in relapsed or refractory multiple myeloma (BMA117159): a dose escalation and expansion phase 1 trial. Lancet Oncol. 2018;19(12):1641–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Trudel S, et al. Antibody-drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: an update on safety and efficacy from dose expansion phase I study. Blood Cancer J. 2019;9(4):37.

    Article  PubMed  PubMed Central  Google Scholar 

  48. •• Lonial S, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020;21(2):207–21 This trial evaluated belantamab mafodotin in relapsed/refractory setting and showed efficacy, leading to the FDA approval of the drug.

    Article  CAS  PubMed  Google Scholar 

  49. Eaton JS, et al. Ocular adverse events associated with antibody-drug conjugates in human clinical trials. J Ocul Pharmacol Ther. 2015;31(10):589–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kumar SK, et al. Phase 1, first-in-human study of MEDI2228, a BCMA-targeted ADC in patients with relapsed/refractory multiple myeloma. Blood. 2020;136(Supplement 1):26–7.

    Article  Google Scholar 

  51. Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol. 2015;93(3):290–6.

    Article  CAS  PubMed  Google Scholar 

  52. Lejeune M, et al. Bispecific, T-cell-recruiting antibodies in B-cell malignancies. Front Immunol. 2020;11:762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009;69(12):4941–4.

    Article  CAS  PubMed  Google Scholar 

  54. Topp MS, et al. Anti-B-cell maturation antigen BiTE molecule AMG 420 induces responses in multiple myeloma. J Clin Oncol. 2020;38(8):775–83.

    Article  CAS  PubMed  Google Scholar 

  55. Harrison SJ, et al. A phase 1 first in human (FIH) study of AMG 701, an anti-B-cell maturation antigen (BCMA) half-life extended (HLE) BiTE® (bispecific T-cell engager) molecule, in relapsed/refractory (RR) multiple myeloma (MM). Blood. 2020;136(Supplement 1):28–9.

    Article  Google Scholar 

  56. •• Garfall AL, et al. Updated phase 1 results of teclistamab, a B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in relapsed and/or refractory multiple myeloma (RRMM). Blood. 2020;136(Supplement 1):27 Teclistamab, anti-BCMA/CD3 bispecific antibody, was evaluated in this phase I study. We expect that bispecific antibodies will be incorporated in the treatment of multiple myeloma in the near future.

    Article  Google Scholar 

  57. Buelow B, et al. Development of a fully human t-cell engaging bispecific antibody for the treatment of multiple myeloma. J Clin Oncol. 2018;36(5_suppl):60.

    Article  Google Scholar 

  58. Rodriguez C, et al. Initial results of a phase I study of TNB-383B, a BCMA x CD3 bispecific T-cell redirecting antibody, in relapsed/refractory multiple myeloma. Blood. 2020;136(Supplement 1):43–4.

    Article  Google Scholar 

  59. Madduri D, et al. REGN5458, a BCMA x CD3 bispecific monoclonal antibody, induces deep and durable responses in patients with relapsed/refractory multiple myeloma (RRMM). Blood. 2020;136(Supplement 1):41–2.

    Article  Google Scholar 

  60. Costa LJ, et al. First clinical study of the B-cell maturation antigen (BCMA) 2+1 T cell engager (TCE) CC-93269 in patients (Pts) with relapsed/refractory multiple myeloma (RRMM): interim results of a Phase 1 multicenter trial. Blood. 2019;134(Supplement_1):143.

    Article  Google Scholar 

  61. Lesokhin AM, et al. Preliminary safety, efficacy, pharmacokinetics, and pharmacodynamics of subcutaneously (SC) administered PF-06863135, a B-cell maturation antigen (BCMA)-CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM). Blood. 2020;136(Supplement 1):8–9.

    Article  Google Scholar 

  62. Smith EL, et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci Transl Med. 2019;11(485).

  63. Pillarisetti K, et al. A T-cell-redirecting bispecific G-protein-coupled receptor class 5 member D x CD3 antibody to treat multiple myeloma. Blood. 2020;135(15):1232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chari A, et al. A phase 1, first-in-human study of talquetamab, a G protein-coupled receptor family C group 5 member D (GPRC5D) x CD3 bispecific antibody, in patients with relapsed and/or refractory multiple myeloma (RRMM). Blood. 2020;136(Supplement 1):40–1.

    Article  Google Scholar 

  65. Polson AG, et al. Expression pattern of the human FcRH/IRTA receptors in normal tissue and in B-chronic lymphocytic leukemia. Int Immunol. 2006;18(9):1363–73.

    Article  CAS  PubMed  Google Scholar 

  66. Li J, et al. Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing. Cancer Cell. 2017;31(3):383–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cohen AD, et al. Initial clinical activity and safety of BFCR4350A, a FcRH5/CD3 T-cell-engaging bispecific antibody, in relapsed/refractory multiple myeloma. Blood. 2020;136(Supplement 1):42–3.

    Article  Google Scholar 

  68. Nijhof IS, et al. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood. 2016;128(7):959–70.

    Article  CAS  PubMed  Google Scholar 

  69. Kitadate A, et al. Pre-treatment CD38-positive regulatory T cells affect the durable response to daratumumab in relapsed/refractory multiple myeloma patients. Haematologica. 2020;105(1):e37–40.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Saltarella I, et al. Mechanisms of resistance to anti-CD38 daratumumab in multiple myeloma. Cells. 2020;9(1).

  71. García-Alonso S, Ocaña A, Pandiella A. Resistance to antibody-drug conjugates. Cancer Res. 2018;78(9):2159–65.

    Article  PubMed  CAS  Google Scholar 

  72. Eastman S, et al. Synergistic activity of belantamab mafodotin (anti-BCMA immuno-conjugate) with PF-03084014 (gamma-secretase inhibitor) in BCMA-expressing cancer cell lines. 2019. p. 4401.

  73. Samur MK, et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat Commun. 2021;12(1):868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Figure 1 was created with BioRender.com.

Funding

SS was supported by KL2TR003143, KL2 Mentored Career Development Program, Stanford Clinical Translational Science Award Program

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surbhi Sidana.

Ethics declarations

Conflict of Interest

Hitomi Hosoya; no conflicts of interest. Surbhi Sidana: Consultancy and research funding: Janssen; research funding: Magenta Therapeutics, Allogene.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Multiple Myeloma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosoya, H., Sidana, S. Antibody-Based Treatment Approaches in Multiple Myeloma. Curr Hematol Malig Rep 16, 183–191 (2021). https://doi.org/10.1007/s11899-021-00624-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-021-00624-6

Keywords

Navigation