Skip to main content
Log in

Recent advances in understanding the biology of follicular lymphoma

  • Progress in Hematology
  • A cutting edge of B cell lymphomas - DLBCL and FL
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Follicular lymphoma (FL), the most common indolent B-cell lymphoma, develops over decades before manifesting as overt disease. BCL2 overexpression by t(14;18) confers a survival advantage to B cells during the germinal center reaction, and abnormalities in epigenetic modifier genes lead to desynchronization of gene expression changes in germinal center B cells. Studies in mouse models have shown that BCL2 overexpression and epigenetic deregulation in B cells cooperatively promote lymphomagenesis. The immune microenvironment also plays an essential role in the biology of FL, and many molecular prognostic indicators based on the immune microenvironment have been proposed. However, high-risk gene signatures do not appear to be consistent between patients receiving different chemotherapies. FL cells frequently carry N-linked glycosylation motifs within the immunoglobulin gene, leading to chronic activation of the B-cell receptor (BCR). Recent evidence suggests that this chronic BCR signaling drives FL polarization toward a dark-zone phenotype and promotes clonal evolution. Since both epigenetic and post-transcriptional modifications of B cells have been implicated in the early stage of FL development, it may be possible to use novel non-chemotherapeutic approaches that interfere with the immunobiology in treatment or early prevention of FL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 2022;40:413–42.

    Article  CAS  PubMed  Google Scholar 

  2. Carbone A, Roulland S, Gloghini A, et al. Follicular lymphoma. Nat Rev Dis Primers. 2019;5(1):83.

    Article  PubMed  Google Scholar 

  3. Milpied P, Cervera-Marzal I, Mollichella ML, et al. Human germinal center transcriptional programs are de-synchronized in B cell lymphoma. Nat Immunol. 2018;19(9):1013–24.

    Article  CAS  PubMed  Google Scholar 

  4. Huet S, Sujobert P, Salles G. From genetics to the clinic: a translational perspective on follicular lymphoma. Nat Rev Cancer. 2018;18(4):224–39.

    Article  CAS  PubMed  Google Scholar 

  5. Kumar E, Pickard L, Okosun J. Pathogenesis of follicular lymphoma: genetics to the microenvironment to clinical translation. Br J Haematol. 2021;194(5):810–21.

    Article  CAS  PubMed  Google Scholar 

  6. Béguelin W, Popovic R, Teater M, et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell. 2013;23(5):677–92.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang J, Dominguez-Sola D, Hussein S, et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med. 2015;21(10):1190–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Vlasevska S, Wells VA, et al. The CREBBP acetyltransferase is a haploinsufficient tumor suppressor in B-cell lymphoma. Cancer Discov. 2017;7(3):322–37.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bödör C, Grossmann V, Popov N, et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood. 2013;122(18):3165–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Morin RD, Johnson NA, Severson TM, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Okosun J, Bödör C, Wang J, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 2014;46(2):176–81.

    Article  CAS  PubMed  Google Scholar 

  12. Ennishi D, Takata K, Béguelin W, et al. Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discov. 2019;9(4):546–63.

    Article  PubMed  Google Scholar 

  13. Otsuka Y, Nishikori M, Arima H, et al. EZH2 inhibitors restore epigenetically silenced CD58 expression in B-cell lymphomas. Mol Immunol. 2020;119:35–45.

    Article  CAS  PubMed  Google Scholar 

  14. Yuan H, Nishikori M, Otsuka Y, Arima H, Kitawaki T, Takaori-Kondo A. The EZH2 inhibitor tazemetostat upregulates the expression of CCL17/TARC in B-cell lymphoma and enhances T-cell recruitment. Cancer Sci. 2021;112(11):4604–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Bui T, Zhang Y. The pleiotropic roles of EZH2 in T-cell immunity and immunotherapy. Int J Hematol. 2022;116(6):837–45.

    Article  CAS  PubMed  Google Scholar 

  16. Lamaison C, Tarte K. B cell/stromal cell crosstalk in health, disease, and treatment: follicular lymphoma as a paradigm. Immunol Rev. 2021;302(1):273–85.

    Article  CAS  PubMed  Google Scholar 

  17. Dave SS, Wright G, Tan B, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351(21):2159–69.

    Article  CAS  PubMed  Google Scholar 

  18. Bolen CR, McCord R, Huet S, et al. Mutation load and an effector T-cell gene signature may distinguish immunologically distinct and clinically relevant lymphoma subsets. Blood Adv. 2017;1(22):1884–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huet S, Tesson B, Jais JP, et al. A gene-expression profiling score for prediction of outcome in patients with follicular lymphoma: a retrospective training and validation analysis in three international cohorts. Lancet Oncol. 2018;19(4):549–61.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Laurent C, Müller S, Do C, et al. Distribution, function, and prognostic value of cytotoxic T lymphocytes in follicular lymphoma: a 3-D tissue-imaging study. Blood. 2011;118(20):5371–9.

    Article  CAS  PubMed  Google Scholar 

  21. Alvaro T, Lejeune M, Salvadó MT, et al. Immunohistochemical patterns of reactive microenvironment are associated with clinicobiologic behavior in follicular lymphoma patients. J Clin Oncol. 2006;24(34):5350–7.

    Article  PubMed  Google Scholar 

  22. Wahlin BE, Aggarwal M, Montes-Moreno S, et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1–positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin Cancer Res. 2010;16(2):637–50.

    Article  CAS  PubMed  Google Scholar 

  23. Marcus R, Davies A, Ando K, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med. 2017;377(14):1331–44.

    Article  CAS  PubMed  Google Scholar 

  24. Bolen CR, Mattiello F, Herold M, et al. Treatment dependence of prognostic gene expression signatures in de novo follicular lymphoma. Blood. 2021;137(19):2704–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu D, McCarthy H, Ottensmeier CH, Johnson P, Hamblin TJ, Stevenson FK. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood. 2002;99(7):2562–8.

    Article  CAS  PubMed  Google Scholar 

  26. Coelho V, Krysov S, Ghaemmaghami AM, et al. Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc Natl Acad Sci U S A. 2010;107(43):18587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amin R, Mourcin F, Uhel F, et al. DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma. Blood. 2015;126(16):1911–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Linley A, Krysov S, Ponzoni M, Johnson PW, Packham G, Stevenson FK. Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells. Blood. 2015;126(16):1902–10.

    Article  CAS  PubMed  Google Scholar 

  29. van Bergen CAM, Kloet SL, Quinten E, et al. Acquisition of a glycosylated B-cell receptor drives follicular lymphoma toward a dark zone phenotype. Blood Adv. 2023;7(19):5812–6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momoko Nishikori.

Ethics declarations

Conflict of interest

The author has received research funding from SymBio Pharmaceuticals Ltd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikori, M. Recent advances in understanding the biology of follicular lymphoma. Int J Hematol (2024). https://doi.org/10.1007/s12185-024-03764-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12185-024-03764-6

Keywords

Navigation