Skip to main content

Advertisement

Log in

Clinicopathological characteristics associated with the engraftment of patient lymphoma cells in NOG mice

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Patient-derived xenograft (PDX) mouse models are useful for deepening our understanding of the biology of malignant lymphoma; however, factors associated with the success of the PDX lymphoma model are largely unknown. We retrospectively analyzed the characteristics of 66 xenotransplantations from 65 patients. In all, 43 (65%) specimens were obtained from patients aged > 60 years, and 42 (64%) specimens were obtained at diagnosis. Specimens were obtained from patients with the following diseases: diffuse large B-cell lymphoma (n = 30), intravascular large B-cell lymphoma (n = 12), follicular lymphoma (n = 8), peripheral T-cell lymphoma (n = 7), mantle cell lymphoma (n = 2), and other (n = 7). The specimens were sourced mainly from bone marrow (n = 31, 47%) and extranodal tumors (n = 13, 20%). Engraftment was successful in 33/66 (50%) xenotransplantations. The median age of patients who provided successful specimens was significantly higher than that for unsuccessful specimens (p = 0.013). Specimens with a high proportion of tumor cells in the graft and those obtained from patients with relapsed/refractory disease showed higher tendencies toward successful engraftment. Taken together, these data suggest that tumor cells with a highly malignant potential might have a high likelihood of engraftment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Qualified researchers may contact the corresponding author to share further data reported in this article. Request will be reviewed based on scientific merit. In compliance with the domestic ethics guideline, the data including individual deidentified patients’ data underlying the results reported in this article can be shared under the approval of each institutional review board.

References

  1. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42.

    Article  CAS  PubMed  Google Scholar 

  2. Pfreundschuh M, Trumper L, Osterborg A, Pettengell R, Trneny M, Imrie K, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera international trial (MInT) group. Lancet Oncol. 2006;7(5):379–91.

    Article  CAS  PubMed  Google Scholar 

  3. Hiddemann W, Kneba M, Dreyling M, Schmitz N, Lengfelder E, Schmits R, et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German low-grade lymphoma study group. Blood. 2005;106(12):3725–32.

    Article  CAS  PubMed  Google Scholar 

  4. Marcus R, Imrie K, Solal-Celigny P, Catalano JV, Dmoszynska A, Raposo JC, et al. Phase III study of R-CVP compared with cyclophosphamide, vincristine, and prednisone alone in patients with previously untreated advanced follicular lymphoma. J Clin Oncol. 2008;26(28):4579–86.

    Article  CAS  PubMed  Google Scholar 

  5. McPhail ED, Maurer MJ, Macon WR, Feldman AL, Kurtin PJ, Ketterling RP, et al. Inferior survival in high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements is not associated with MYC/IG gene rearrangements. Haematologica. 2018;103(11):1899–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  7. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Locke FL, Miklos DB, Jacobson CA, Perales MA, Kersten MJ, Oluwole OO, et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med. 2022;386(7):640–54.

    Article  CAS  PubMed  Google Scholar 

  9. Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–52.

    Article  PubMed  Google Scholar 

  10. Budde LE, Assouline S, Sehn LH, Schuster SJ, Yoon SS, Yoon DH, et al. Single-agent mosunetuzumab shows durable complete responses in patients with relapsed or refractory B-cell lymphomas: phase I dose-escalation study. J Clin Oncol. 2022;40(5):481–91.

    Article  CAS  PubMed  Google Scholar 

  11. Hutchings M, Mous R, Clausen MR, Johnson P, Linton KM, Chamuleau MED, et al. Dose escalation of subcutaneous epcoritamab in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an open-label, phase 1/2 study. Lancet. 2021;398(10306):1157–69.

    Article  CAS  PubMed  Google Scholar 

  12. Sehn LH, Herrera AF, Flowers CR, Kamdar MK, McMillan A, Hertzberg M, et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2020;38(2):155–65.

    Article  CAS  PubMed  Google Scholar 

  13. Tilly H, Morschhauser F, Sehn LH, Friedberg JW, Trneny M, Sharman JP, et al. Polatuzumab vedotin in previously untreated diffuse large B-cell lymphoma. N Engl J Med. 2022;386(4):351–63.

    Article  CAS  PubMed  Google Scholar 

  14. Kotlov N, Bagaev A, Revuelta MV, Phillip JM, Cacciapuoti MT, Antysheva Z, et al. Clinical and biological subtypes of B-cell lymphoma revealed by microenvironmental signatures. Cancer Discov. 2021;11(6):1468–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Autio M, Leivonen SK, Bruck O, Karjalainen-Lindsberg ML, Pellinen T, Leppa S. Clinical impact of immune cells and their spatial interactions in diffuse large B-cell lymphoma microenvironment. Clin Cancer Res. 2022;28(4):781–92.

    Article  CAS  PubMed  Google Scholar 

  16. Sugimoto K, Hayakawa F, Shimada S, Morishita T, Shimada K, Katakai T, et al. Discovery of a drug targeting microenvironmental support for lymphoma cells by screening using patient-derived xenograft cells. Sci Rep. 2015;5(1):13054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chapuy B, Cheng H, Watahiki A, Ducar MD, Tan Y, Chen L, et al. Diffuse large B-cell lymphoma patient-derived xenograft models capture the molecular and biological heterogeneity of the disease. Blood. 2016;127(18):2203–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seol HS, Kang HJ, Lee SI, Kim NE, Kim TI, Chun SM, et al. Development and characterization of a colon PDX model that reproduces drug responsiveness and the mutation profiles of its original tumor. Cancer Lett. 2014;345(1):56–64.

    Article  CAS  PubMed  Google Scholar 

  19. Scott CL, Becker MA, Haluska P, Samimi G. Patient-derived xenograft models to improve targeted therapy in epithelial ovarian cancer treatment. Front Oncol. 2013;3:295.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ito M, Kobayashi K, Nakahata T. NOD/Shi-scid IL2rgamma(null) (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol. 2008;324:53–76.

    CAS  PubMed  Google Scholar 

  21. Takajo I, Umeki K, Morishita K, Yamamoto I, Kubuki Y, Hatakeyama K, et al. Engraftment of peripheral blood mononuclear cells from human T-lymphotropic virus type 1 carriers in NOD/SCID/gammac(null) (NOG) mice. Int J Cancer. 2007;121(10):2205–11.

    Article  CAS  PubMed  Google Scholar 

  22. Chijiwa T, Kawai K, Noguchi A, Sato H, Hayashi A, Cho H, et al. Establishment of patient-derived cancer xenografts in immunodeficient NOG mice. Int J Oncol. 2015;47(1):61–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi YY, Lee JE, Kim H, Sim MH, Kim KK, Lee G, et al. Establishment and characterisation of patient-derived xenografts as paraclinical models for gastric cancer. Sci Rep. 2016;6:22172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shimada K, Shimada S, Sugimoto K, Nakatochi M, Suguro M, Hirakawa A, et al. Development and analysis of patient-derived xenograft mouse models in intravascular large B-cell lymphoma. Leukemia. 2016;30(7):1568–79.

    Article  CAS  PubMed  Google Scholar 

  25. Aoki T, Shimada K, Sakamoto A, Sugimoto K, Morishita T, Kojima Y, et al. Emetine elicits apoptosis of intractable B-cell lymphoma cells with MYC rearrangement through inhibition of glycolytic metabolism. Oncotarget. 2017;8(8):13085–98.

    Article  PubMed  Google Scholar 

  26. Moon HG, Oh K, Lee J, Lee M, Kim JY, Yoo TK, et al. Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers. Breast Cancer Res Treat. 2015;154(1):13–22.

    Article  PubMed  Google Scholar 

  27. Pergolini I, Morales-Oyarvide V, Mino-Kenudson M, Honselmann KC, Rosenbaum MW, Nahar S, et al. Tumor engraftment in patient-derived xenografts of pancreatic ductal adenocarcinoma is associated with adverse clinicopathological features and poor survival. PLoS One. 2017;12(8): e0182855.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Park HS, Lee JD, Kim JY, Park S, Kim JH, Han HJ, et al. Establishment of chemosensitivity tests in triple-negative and BRCA-mutated breast cancer patient-derived xenograft models. PLoS One. 2019;14(12): e0225082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Katakai T, Hara T, Sugai M, Gonda H, Shimizu A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J Exp Med. 2004;200(6):783–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sakamoto A, Kunou S, Shimada K, Tsunoda M, Aoki T, Iriyama C, et al. Pyruvate secreted from patient-derived cancer-associated fibroblasts supports survival of primary lymphoma cells. Cancer Sci. 2019;110(1):269–78.

    Article  CAS  PubMed  Google Scholar 

  31. Kunou S, Shimada K, Takai M, Sakamoto A, Aoki T, Hikita T, et al. Exosomes secreted from cancer-associated fibroblasts elicit anti-pyrimidine drug resistance through modulation of its transporter in malignant lymphoma. Oncogene. 2021;40(23):3989–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawashima N, Ishikawa Y, Kim JH, Ushijima Y, Akashi A, Yamaguchi Y, et al. Comparison of clonal architecture between primary and immunodeficient mouse-engrafted acute myeloid leukemia cells. Nat Commun. 2022;13(1):1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamaguchi M, Seto M, Okamoto M, Ichinohasama R, Nakamura N, Yoshino T, et al. De novo CD5+ diffuse large B-cell lymphoma: a clinicopathologic study of 109 patients. Blood. 2002;99(3):815–21.

    Article  CAS  PubMed  Google Scholar 

  34. Miyazaki K, Yamaguchi M, Suzuki R, Kobayashi Y, Maeshima AM, Niitsu N, et al. CD5-positive diffuse large B-cell lymphoma: a retrospective study in 337 patients treated by chemotherapy with or without rituximab. Ann Oncol. 2011;22(7):1601–7.

    Article  CAS  PubMed  Google Scholar 

  35. Miyazaki K, Yamaguchi M, Imai H, Kobayashi K, Tamaru S, Kobayashi T, et al. Gene expression profiling of diffuse large B-Cell lymphomas supervised by CD5 expression. Int J Hematol. 2015;102(2):188–94.

    Article  CAS  PubMed  Google Scholar 

  36. Kikushige Y, Ishikawa F, Miyamoto T, Shima T, Urata S, Yoshimoto G, et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell. 2011;20(2):246–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Yoko Matsuyama, Ms. Chika Wakamatsu, Ms. Manami Kira, Ms. Yukie Konishi, Ms. Yuko Kojima, Ms. Saori Kanamori, and Ms. Konomi Ōyama (Nagoya University) for assistance with laboratory work. This work was supported by a JSPS Grant-in-Aid for Young Scientists (B) (No. 14443918) and Grants-in-Aid for Scientific Research (C) (Nos. 17K09922 and 20K08751) to K.S.

Author information

Authors and Affiliations

Authors

Contributions

KS and HK designed the study; SS, KS, YT, TA, SK, AS, AM, KF, YK, YY, MT, and KT performed experiments and collected data; SS, KS, and HK analyzed and interpreted the data; SS and SN evaluated pathological specimens; KS and HK provided financial support; SS and KS performed the statistical analysis; SN and HK supervised the research; and SS, KS, and HK wrote the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Kazuyuki Shimada.

Ethics declarations

Conflict of interest

K.S. has received honoraria from AstraZeneca, Eisai, Celgene, Takeda, Janssen, Bristol-Myers Squibb, Chugai, Kyowa Kirin, Nippon Shinyaku, Daiichi Sankyo, Meiji Seika Pharma, Ono, AbbVie, and Novartis; and has received funding from Celgene, Otsuka, and Kyowa Kirin. K.F. has received honoraria from Chugai. H.K. has received research funding from FUJIFILM, Kyowa-Kirin, Bristol-Myers Squibb, Otsuka, Perseus Proteomics, Daiichi Sankyo, AbbVie, CURED, Astellas Pharma, Chugai, Zenyaku Kogyo, Nippon Shinyaku, Eisai, Takeda, Sumitomo Pharma, and Sanofi; and honoraria from AbbVie, Chugai, Astellas Pharma, and Novartis. All other authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 18 KB)

Supplementary file2 (XLSX 14 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahashi, S., Shimada, K., Takagi, Y. et al. Clinicopathological characteristics associated with the engraftment of patient lymphoma cells in NOG mice. Int J Hematol 118, 221–230 (2023). https://doi.org/10.1007/s12185-023-03604-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-023-03604-z

Keywords

Navigation