Skip to main content

Advertisement

Log in

Ribosome profiling analysis reveals the roles of DDX41 in translational regulation

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

DDX41 mutation has been observed in myeloid malignancies including myelodysplastic syndromes and acute myeloid leukemia, but the underlying causative mechanisms of these diseases have not been fully elucidated. The DDX41 protein is an ATP-dependent RNA helicase with roles in RNA metabolism. We previously showed that DDX41 is involved in ribosome biogenesis by promoting the processing of newly transcribed pre-ribosomal RNA. To build on this finding, in this study, we leveraged ribosome profiling technology to investigate the involvement of DDX41 in translation. We found that DDX41 knockdown resulted in both translationally increased and decreased transcripts. Both gene set enrichment analysis and gene ontology analysis indicated that ribosome-associated genes were translationally promoted after DDX41 knockdown, in part because these transcripts had significantly shorter transcript length and higher transcriptional and translational levels. In addition, we found that transcripts with 5’-terminal oligopyrimidine motifs tended to be translationally upregulated when the DDX41 level was low. Our data suggest that a translationally regulated feedback mechanism involving DDX41 may exist for ribosome biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Ribo-seq data is available in the DDBJ database (https://www.ddbj.nig.ac.jp/ddbj/index-e.html) under accession number DRA015477.

References

  1. Linder P, Jankowsky E. From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol. 2011;12:505–16.

    Article  CAS  PubMed  Google Scholar 

  2. Byrd AK, Raney KD. Superfamily 2 helicases. Front Biosci (Landmark Ed). 2012;17:2070–88.

    Article  PubMed  Google Scholar 

  3. Schutz P, Karlberg T, van den Berg S, Collins R, Lehtio L, Hogbom M, et al. Comparative structural analysis of human DEAD-box RNA helicases. PLoS ONE. 2010;5:e12791.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fuller-Pace FV. DEAD box RNA helicase functions in cancer. RNA Biol. 2013;10:121–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heerma van Voss MR, van Diest PJ, Raman V. Targeting RNA helicases in cancer: the translation trap. Biochim Biophys Acta Rev Cancer. 2017;1868:510–20.

    Article  CAS  PubMed  Google Scholar 

  6. Polprasert C, Schulze I, Sekeres MA, Makishima H, Przychodzen B, Hosono N, et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell. 2015;27:658–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheah JJC, Hahn CN, Hiwase DK, Scott HS, Brown AL. Myeloid neoplasms with germline DDX41 mutation. Int J Hematol. 2017;106:163–74.

    Article  CAS  PubMed  Google Scholar 

  8. Shinriki S, Matsui H. Unique role of DDX41, a DEAD-box type RNA helicase, in hematopoiesis and leukemogenesis. Front Oncol. 2022;12:992340.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Badar T, Chlon T. Germline and Somatic Defects in DDX41 and its Impact on myeloid neoplasms. Curr Hematol Malig Rep. 2022;17:113–20.

    Article  PubMed  Google Scholar 

  10. Li P, White T, Xie W, Cui W, Peker D, Zeng G, et al. AML with germline DDX41 variants is a clinicopathologically distinct entity with an indolent clinical course and favorable outcome. Leukemia. 2022;36:664–74.

    Article  CAS  PubMed  Google Scholar 

  11. Sebert M, Passet M, Raimbault A, Rahme R, Raffoux E, Sicre de Fontbrune F, et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood. 2019;134:1441–4.

    Article  PubMed  Google Scholar 

  12. Li P, Brown S, Williams M, White T, Xie W, Cui W, et al. The genetic landscape of germline DDX41 variants predisposing to myeloid neoplasms. Blood. 2022;140:716–55.

    Article  CAS  PubMed  Google Scholar 

  13. Kadono M, Kanai A, Nagamachi A, Shinriki S, Kawata J, Iwato K, et al. Biological implications of somatic DDX41 pR525H mutation in acute myeloid leukemia. Exp Hematol. 2016;44:745–54.

    Article  CAS  PubMed  Google Scholar 

  14. Brar GA, Weissman JS. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol. 2015;16:651–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.

    Article  CAS  PubMed  Google Scholar 

  16. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  17. Zhong Y, Karaletsos T, Drewe P, Sreedharan VT, Kuo D, Singh K, et al. RiboDiff: detecting changes of mRNA translation efficiency from ribosome footprints. Bioinformatics. 2017;33:139–41.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang P, He D, Xu Y, Hou J, Pan BF, Wang Y, et al. Genome-wide identification and differential analysis of translational initiation. Nat Commun. 2017;8:1749.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Quesada AE, Routbort MJ, DiNardo CD, Bueso-Ramos CE, Kanagal-Shamanna R, Khoury JD, et al. DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease. Am J Hematol. 2019;94:757–66.

    CAS  PubMed  Google Scholar 

  20. Choi EJ, Cho YU, Hur EH, Jang S, Kim N, Park HS, et al. Unique ethnic features of DDX41 mutations in patients with idiopathic cytopenia of undetermined significance, myelodysplastic syndrome, or acute myeloid leukemia. Haematologica. 2022;107:510–8.

    Article  CAS  PubMed  Google Scholar 

  21. Shinriki S, Hirayama M, Nagamachi A, Yokoyama A, Kawamura T, Kanai A, et al. DDX41 coordinates RNA splicing and transcriptional elongation to prevent DNA replication stress in hematopoietic cells. Leukemia. 2022;36:2605–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haddach M, Schwaebe MK, Michaux J, Nagasawa J, O’Brien SE, Whitten JP, et al. Discovery of CX-5461, the first direct and selective inhibitor of RNA polymerase I, for cancer therapeutics. ACS Med Chem Lett. 2012;3:602–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stedman A, Beck-Cormier S, Le Bouteiller M, Raveux A, Vandormael-Pournin S, Coqueran S, et al. Ribosome biogenesis dysfunction leads to p53-mediated apoptosis and goblet cell differentiation of mouse intestinal stem/progenitor cells. Cell Death Differ. 2015;22:1865–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peters D, Radine C, Reese A, Budach W, Sohn D, Jänicke RU. The DEAD-box RNA helicase DDX41 is a novel repressor of p21(WAF1/CIP1) mRNA translation. J Biol Chem. 2017;292:8331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chlon TM, Stepanchick E, Hershberger CE, Daniels NJ, Hueneman KM, Kuenzi Davis A, et al. Germline DDX41 mutations cause ineffective hematopoiesis and myelodysplasia. Cell Stem Cell. 2021;28:1966–81.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc. 2012;7:1534–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shalgi R, Hurt JA, Krykbaeva I, Taipale M, Lindquist S, Burge CB. Widespread regulation of translation by elongation pausing in heat shock. Mol Cell. 2013;49:439–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Collart MA, Weiss B. Ribosome pausing, a dangerous necessity for co-translational events. Nucleic Acids Res. 2020;48:1043–55.

    Article  CAS  PubMed  Google Scholar 

  29. Jiang Z, Yang J, Dai A, Wang Y, Li W, Xie Z. Ribosome profiling reveals translational regulation of mammalian cells in response to hypoxic stress. BMC Genom. 2017;18:638.

    Article  Google Scholar 

  30. Leppek K, Das R, Barna M. Functional 5’ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018;19:158–74.

    Article  CAS  PubMed  Google Scholar 

  31. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cockman E, Anderson P, Ivanov P. TOP mRNPs: molecular mechanisms and principles of regulation. Biomolecules. 2020;10:969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015;43:W39-49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sawicka K, Bushell M, Spriggs KA, Willis AE. Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans. 2008;36:641–7.

    Article  CAS  PubMed  Google Scholar 

  35. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  PubMed  Google Scholar 

  37. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7.

    Article  CAS  PubMed  Google Scholar 

  38. Stavrou S, Aguilera AN, Blouch K, Ross SR. DDX41 Recognizes RNA/DNA Retroviral Reverse Transcripts and Is Critical for In Vivo Control of Murine Leukemia Virus Infection. mBio. 2018;9:e00923–18.

  39. Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol. 2011;12:959–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee KG, Kim SS, Kui L, Voon DC, Mauduit M, Bist P, et al. Bruton’s tyrosine kinase phosphorylates DDX41 and activates its binding of dsDNA and STING to initiate type 1 interferon response. Cell Rep. 2015;10:1055–65.

    Article  CAS  PubMed  Google Scholar 

  41. Parvatiyar K, Zhang Z, Teles RM, Ouyang S, Jiang Y, Iyer SS, et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol. 2012;13:1155–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Singh RS, Vidhyasagar V, Yang S, Arna AB, Yadav M, Aggarwal A, et al. DDX41 is required for cGAS-STING activation against DNA virus infection. Cell Rep. 2022;39:110856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lewinsohn M, Brown AL, Weinel LM, Phung C, Rafidi G, Lee MK, et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood. 2016;127:1017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cardoso SR, Ryan G, Walne AJ, Ellison A, Lowe R, Tummala H, et al. Germline heterozygous DDX41 variants in a subset of familial myelodysplasia and acute myeloid leukemia. Leukemia. 2016;30:2083–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ogawa S. Genetics of MDS. Blood. 2019;133:1049–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hegele A, Kamburov A, Grossmann A, Sourlis C, Wowro S, Weimann M, et al. Dynamic protein-protein interaction wiring of the human spliceosome. Mol Cell. 2012;45:567–80.

    Article  CAS  PubMed  Google Scholar 

  47. Bourgeois CF, Mortreux F, Auboeuf D. The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat Rev Mol Cell Biol. 2016;17:426–38.

    Article  CAS  PubMed  Google Scholar 

  48. Guzzi N, Muthukumar S, Cieśla M, Todisco G, Ngoc PCT, Madej M, et al. Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome. Nat Cell Biol. 2022;24:299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guzzi N, Cieśla M, Ngoc PCT, Lang S, Arora S, Dimitriou M, et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell. 2018;173:1204–16.e6.

    Article  CAS  PubMed  Google Scholar 

  50. Ceppi M, Clavarino G, Gatti E, Schmidt EK, de Gassart A, Blankenship D, et al. Ribosomal protein mRNAs are translationally-regulated during human dendritic cells activation by LPS. Immunome Res. 2009;5:5.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Avni D, Biberman Y, Meyuhas O. The 5’ terminal oligopyrimidine tract confers translational control on TOP mRNAs in a cell type- and sequence context-dependent manner. Nucleic Acids Res. 1997;25:995–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G. Rapamycin suppresses 5’TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997;16:3693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fonseca BD, Lahr RM, Damgaard CK, Alain T, Berman AJ. LARP1 on TOP of ribosome production. Wiley Interdiscip Rev RNA. 2018;9:e1480.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Vadivel Gnanasundram S, Fahraeus R. Translation stress regulates ribosome synthesis and cell proliferation. Int J Mol Sci. 2018;19:3757.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31–42.

    Article  CAS  PubMed  Google Scholar 

  56. Dai D, Wang H, Zhu L, Jin H, Wang X. N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis. 2018;9:124.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Spevak CC, Elias HK, Kannan L, Ali MAE, Martin GH, Selvaraj S, et al. Hematopoietic stem and progenitor cells exhibit stage-specific translational programs via mTOR- and CDK1-dependent mechanisms. Cell Stem Cell. 2020;26:755-765.e757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our deepest appreciation to Ms. Aya Higashi, Ms. Sachiko Sakata, Ms. Miyu Tanaka and Ms. Etsuko Sekimori for their technical assistance, and to Ms. Kazue Akita for clerical work. This work was supported by JSPS KAKENHI Grant Number 21K08419 and 18K08334, the Program of the Network-type Joint Usage/Research Center for Radiation Disaster Medical Science, the Japanese Society of Hematology Research Grant and the Foundation for Promotion of Cancer Research. We would like to express our gratitude for these financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Matsui.

Ethics declarations

Conflict of interest

All authors declare that there are no financial or nonfinancial conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 8846 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tungalag, S., Shinriki, S., Hirayama, M. et al. Ribosome profiling analysis reveals the roles of DDX41 in translational regulation. Int J Hematol 117, 876–888 (2023). https://doi.org/10.1007/s12185-023-03558-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-023-03558-2

Keywords

Navigation