Skip to main content

Advertisement

Log in

Comparison of the impact of two post-remission therapy regimens on cardiac events in acute myeloid leukemia patients undergoing allogeneic hematopoietic stem cell transplantation

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

High-dose cytarabine (HD-AraC) or anthracycline-containing chemotherapies are used as post-remission therapy for acute myeloid leukemia (AML) patients. However, it remains unclear which regimen would be better as post-remission therapy before allogeneic hematopoietic stem cell transplantation (allo-HSCT). Thus, we compared the incidence of cardiac events and event-free survival (EFS) after allo-HSCT at two Japanese hospitals between HD-AraC and anthracycline-containing post-remission therapy to clarify the safety of post-remission therapy. Of a total of 132 patients, 68 received HD-AraC (HD-AraC group) and 64 received anthracycline-containing chemotherapy (ANT group). HD-AraC was preferentially selected for core-binding factor AML patients (p = 0.008). The median cumulative anthracycline dose was 115.2 mg/m2 in the HD-AraC group and 318.7 mg/m2 in the ANT group (p < 0.0001). Cardiac events were observed in 18 (13.6%) patients during the follow-up period. The 3-year cumulative incidence of cardiac events was 9.1% in the HD-AraC group and 11.0% in the ANT group (p = 0.70). EFS at 3 years after allo-HSCT was 40.9% in the HD-AraC group and 39.6% in the ANT group (p = 0.51). In conclusion, incidence of cardiac events did not differ significantly between post-remission therapy regimens in AML patients who underwent allo-HSCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lai C, Doucette K, Norsworthy K. Recent drug approvals for acute myeloid leukemia. J Hematol Oncol. 2019;12:100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377:454–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Petersdorf SH, Kopecky KJ, Slovak M, Willman C, Nevill T, Brandwein J, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121:4854–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Estey EH. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol. 2018;93:1267–91.

    Article  PubMed  Google Scholar 

  5. Schlenk RF. Post-remission therapy for acute myeloid leukemia. Haematologica. 2014;99:1663–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miyawaki S, Ohtake S, Fujisawa S, Kiyoi H, Shinagawa K, Usui N, et al. A randomized comparison of 4 courses of standard-dose multiagent chemotherapy versus 3 courses of high-dose cytarabine alone in postremission therapy for acute myeloid leukemia in adults: the JALSG AML201 Study. Blood. 2011;117:2366–72.

    Article  CAS  PubMed  Google Scholar 

  7. Patanè S. Cardiotoxicity: anthracyclines and long term cancer survivors. Int J Cardiol. 2014;176:1326–8.

    Article  PubMed  Google Scholar 

  8. Lotrionte M, Biondi-Zoccai G, Abbate A, Lanzetta G, D’Ascenzo F, Malavasi V, et al. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol. 2013;112:1980–4.

    Article  CAS  PubMed  Google Scholar 

  9. Childhood Acute Lymphoblastic Leukaemia Collaborative Group (CALLCG). Beneficial and harmful effects of anthracyclines in the treatment of childhood acute lymphoblastic leukaemia: a systematic review and meta-analysis. Br J Haematol. 2009;145:376–88.

    Article  CAS  Google Scholar 

  10. Curigliano G, Mayer EL, Burstein HJ, Winer EP, Goldhirsch A. Cardiac toxicity from systemic cancer therapy: a comprehensive review. Prog Cardiovasc Dis. 2010;53:94–104.

    Article  CAS  PubMed  Google Scholar 

  11. Ohtake S, Miyawaki S, Fujita H, Kiyoi H, Shinagawa K, Usui N, et al. Randomized study of induction therapy comparing standard-dose idarubicin with high-dose daunorubicin in adult patients with previously untreated acute myeloid leukemia: the JALSG AML201 Study. Blood. 2011;117:2358–65.

    Article  CAS  PubMed  Google Scholar 

  12. Miyawaki S, Sakamaki H, Ohtake S, Emi N, Yagasaki F, Mitani K, et al. A randomized, postremission comparison of four courses of standard-dose consolidation therapy without maintenance therapy versus three courses of standard-dose consolidation with maintenance therapy in adults with acute myeloid leukemia: The Japan Adult Leukemia Study Group AML97 Study. Cancer. 2005;104:2726–34.

    Article  CAS  PubMed  Google Scholar 

  13. Advani AS, Cooper B, Visconte V, Elson P, Chan R, Carew J, et al. A Phase I/II trial of MEC (Mitoxantrone, Etoposide, Cytarabine) in combination with ixazomib for relapsed refractory acute myeloid leukemia. Clin Cancer Res. 2019;25:4231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hatsumi N, Miyawaki S, Yamauchi T, Takeshita A, Komatsu N, Usui N, et al. Phase II study of FLAGM (fludarabine + high-dose cytarabine + granulocyte colony-stimulating factor + mitoxantrone) for relapsed or refractory acute myeloid leukemia. Int J Hematol. 2019;109:418–25.

    Article  CAS  PubMed  Google Scholar 

  15. Hiddemann W, Kreutzmann H, Straif K, Ludwig W, Mertelsmann R, Donhuijsen- Ant R, et al. High-dose cytosine arabinoside and mitoxantrone: a highly effective regimen in refractory acute myeloid leukemia. Blood. 1987;69:744–9.

    Article  CAS  PubMed  Google Scholar 

  16. Teichholz LE, Kreulen T, Herman MV, Gorlin R. Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol. 1976;37:7–11.

    Article  CAS  PubMed  Google Scholar 

  17. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood. 1998;92:2322–33.

    Article  CAS  PubMed  Google Scholar 

  18. Herait P, Poutignat N, Marty M, Bugat R. Early assessment of a new anticancer drug analogue — are the historical comparisons obsolete? The French experience with pirarubicin. Eur J Cancer. 1992;28:1670–6.

    Article  Google Scholar 

  19. Nakamae H, Hino M, Akahori M, Terada Y, Yamane T, Ohta K, et al. Predictive value of QT dispersion for acute heart failure after autologous and allogeneic hematopoietic stem cell transplantation. Am J Hematol. 2004;76:1–7.

    Article  PubMed  Google Scholar 

  20. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.

    Article  Google Scholar 

  21. de Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6: e441.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oliveira GH, Al-Kindi SG, Caimi PF, Lazarus HM. Maximizing anthracycline tolerability in hematologic malignancies: treat to each heart’s content. Blood Rev. 2016;30:169–78.

    Article  CAS  PubMed  Google Scholar 

  23. Eschenhagen T, Force T, Ewer MS, de Keulenaer GW, Suter TM, Anker SD, et al. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2011;13:1–10.

    Article  PubMed  Google Scholar 

  24. Pinder MC, Duan Z, Goodwin JS, Hortobagyi GN, Giordano SH. Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol. 2007;25:3808–15.

    Article  CAS  PubMed  Google Scholar 

  25. Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol. 2012;60:2504–12.

    Article  CAS  PubMed  Google Scholar 

  26. Myrehaug S, Pintilie M, Yun L, Crump M, Tsang RW, Meyer RM, et al. A population-based study of cardiac morbidity among Hodgkin lymphoma patients with preexisting heart disease. Blood. 2010;116:2237–40.

    Article  CAS  PubMed  Google Scholar 

  27. Hasan S, Dinh K, Lombardo F, Kark J. Doxorubicin cardiotoxicity in African Americans. J Natl Med Assoc. 2004;96:196–9.

    PubMed  PubMed Central  Google Scholar 

  28. Lipshultz SE, Lipsitz SR, Mone SM, Goorin AM, Sallan SE, Sanders SP, et al. Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med. 1995;332:1738–44.

    Article  CAS  PubMed  Google Scholar 

  29. Ishida S, Doki N, Shingai N, Yoshioka K, Kakihana K, Sakamaki H, et al. The clinical features of fatal cyclophosphamide-induced cardiotoxicity in a conditioning regimen for allogeneic hematopoietic stem cell transplantation (allo-HSCT). Ann Hematol. 2016;95:1145–50.

    Article  CAS  PubMed  Google Scholar 

  30. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure. Circulation. 2013;128:240–327.

    Google Scholar 

  31. Hernan MA. Estimating causal effects from epidemiological data. J Epidemiol Commun H. 2006;60:578–86.

    Article  Google Scholar 

  32. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48:452–8.

    Article  CAS  Google Scholar 

  33. Tuzovic M, Mead M, Young PA, Schiller G, Yang EH. Cardiac complications in the adult bone marrow transplant patient. Curr Oncol Rep. 2019;21:28.

    Article  PubMed  Google Scholar 

  34. Armenian SH, Yang D, Teh JB, Atencio LC, Gonzales A, Wong FL, et al. Prediction of cardiovascular disease among hematopoietic cell transplantation survivors. Blood Adv. 2018;2:1756–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dogan A, Dogdu O, Ozdogru I, Yarlioglues M, Kalay N, Inanc MT, et al. Cardiac effects of chronic graft-versus-host disease after stem cell transplantation. Tex Heart I J. 2013;40:428–34.

    Google Scholar 

  36. Vercauteren SB, Bosmans J-L, Elseviers MM, Verpooten GA, de Broe ME. A meta-analysis and morphological review of cyclosporine-induced nephrotoxicity in auto-immune diseases. Kidney Int. 1998;54:536–45.

    Article  CAS  PubMed  Google Scholar 

  37. Krämer BK, Zülke C, Kammerl MC, Schmidt C, Hengstenberg C, Fischereder M, et al. Cardiovascular risk factors and estimated risk for CAD in a randomized trial comparing calcineurin inhibitors in renal transplantation. Am J Transplant. 2003;3:982–7.

    Article  PubMed  Google Scholar 

  38. Horacek JM, Tichy M, Pudil R, Jebavy L. Glycogen phosphorylase BB could be a new circulating biomarker for detection of anthracycline cardiotoxicity. Ann Oncol. 2008;19:1656–7.

    Article  CAS  PubMed  Google Scholar 

  39. ElGhandour AH, el Sorady M, Azab S, ElRahman M. Human heart-type fatty acid-binding protein as an early diagnostic marker of doxorubicin cardiac toxicity. Hematol Rep. 2009;1:6.

    Article  CAS  Google Scholar 

  40. Pudil R, Vašatová M, Lenčo J, Tichý M, Řeháček V, Fučíková A, et al. Plasma glycogen phosphorylase BB is associated with pulmonary artery wedge pressure and left ventricle mass index in patients with hypertrophic cardiomyopathy. Clin Chem Lab Med. 2010;48:1193–5.

    Article  CAS  PubMed  Google Scholar 

  41. Horacek JM, Tichy M, Jebavy L, Ulrychova M, Pudil R. Glycogen phosphorylase BB as a marker of cardiac toxicity during high-dose chemotherapy followed by hematopoietic cell transplantation. Ann Oncol. 2007;18:2041.

    Article  CAS  PubMed  Google Scholar 

  42. Horacek JM, Vasatova M, Pudil R, Tichy M, Zak P, Jakl M, et al. Biomarkers for the early detection of anthracycline-induced cardiotoxicity: current status. Biomed Pap. 2014;158:511–7.

    Article  Google Scholar 

  43. Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981–8.

    Article  CAS  PubMed  Google Scholar 

  44. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ-Cardiovasc Imag. 2012;5:596–603.

    Article  Google Scholar 

  45. Henriksen PA. Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention. Heart. 2018;104:971–7.

    Article  CAS  PubMed  Google Scholar 

  46. Moore JO, George SL, Dodge RK, Amrein PC, Powell BL, Kolitz JE, et al. Sequential multiagent chemotherapy is not superior to high-dose cytarabine alone as postremission intensification therapy for acute myeloid leukemia in adults under 60 years of age: cancer and Leukemia Group B Study 9222. Blood. 2005;105:3420–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thomas X, Elhamri M, Raffoux E, Renneville A, Pautas C, de Botton S, et al. Comparison of high-dose cytarabine and timed-sequential chemotherapy as consolidation for younger adults with AML in first remission: the ALFA-9802 study. Blood. 2011;118:1754–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all hospital staff who were involved in patient care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinobu Kanda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayakawa, J., Nakasone, H., Minakata, D. et al. Comparison of the impact of two post-remission therapy regimens on cardiac events in acute myeloid leukemia patients undergoing allogeneic hematopoietic stem cell transplantation. Int J Hematol 116, 239–247 (2022). https://doi.org/10.1007/s12185-022-03343-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03343-7

Keywords

Navigation