Skip to main content

Advertisement

Log in

Utility of novel T-cell-specific extracellular vesicles in monitoring and evaluation of acute GVHD

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

We have recently reported a new method for detecting T-cell-derived extracellular vesicles (EVs), CD3+CD4+EVs,CD3+CD8+EVs, and CD3+HLA-DR+EVs. In our previous study, CD3+HLA-DR+EVs were released profusely by CD8+T cells, only moderately by T helper1 (Th1) CD4+T cells, and very little from Th2 CD4+T cells in vitro. EVs were measured sequentially in patients undergoing hematopoietic stem cell transplantation (HSCT), and their relationship to GVHD was investigated in comparison with other conventional biomarkers. We analyzed peripheral blood samples from 20 patients (13 children and 7 adults) who underwent HSCT at Tokyo Medical and Dental University Hospital. CD3+CD4+EV and CD3+CD8+EV levels specifically correlated with the CD4+ and CD8+T lymphocyte counts, respectively. CD3+CD8+EVs and CD3+HLA-DR+EVs increased in GVHD and reflected the persistence of GVHD more specifically than soluble IL-2 receptor (sIL-2R). In engraftment syndrome, sIL-2R was markedly elevated, but CD3+HLA-DR+EVs were not. Furthermore, ferritin and sIL-2R markedly increased in hemophagocytic syndrome (HPS) that developed before engraftment; however, the change in CD3+HLA-DR+EVs was marginal. CD3+CD4+, CD3+CD8+, and CD3+HLA-DR+EVs efficiently reflect the cell-mediated immune response, and CD3+CD8+EVs and CD3+HLA-DR+EVs are more useful than other conventional biomarkers, such as sIL-2R, for monitoring and evaluation of acute GVHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EV:

Extracellular vesicle

HSCT:

Hematopoietic stem cell transplantation

GVHD:

Graft versus host disease

HPS:

Hemophagocytic syndrome

sIL-2R:

Soluble IL-2 receptor

ES:

Engraftment syndrome

PSL:

Prednisolone

MTX:

Methotrexate

TAC:

Tacrolimus

CSP:

Ciclosporin

IFX:

Infliximab

CMV:

Cytomegalovirus

HHV-6:

Human herpes virus 6

BKV:

BK virus

References

  1. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–20.

    Article  CAS  PubMed  Google Scholar 

  2. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–72.

    Article  CAS  PubMed  Google Scholar 

  3. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4(5):594–600.

    Article  CAS  PubMed  Google Scholar 

  4. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013;4(2):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep. 2013;3:1197.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells. 2014;32(1):116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dotoli GM, De Santis GC, Orellana MD, de Lima PK, Caruso SR, Fernandes TR, et al. Mesenchymal stromal cell infusion to treat steroid-refractory acute GvHD III/IV after hematopoietic stem cell transplantation. Bone Marrow Transpl. 2017;52(6):859–62.

    Article  CAS  Google Scholar 

  9. Fernandez-Maqueda C, Gonzalo-Daganzo R, Regidor C, Martin-Donaire T, Sanchez R, Bueno JL, et al. Mesenchymal stromal cells for steroid-refractory acute GvHD. Bone Marrow Transpl. 2017;52(11):1577–9.

    Article  CAS  Google Scholar 

  10. Zhang B, Yeo RWY, Lai RC, Sim EWK, Chin KC, Lim SK. Mesenchymal stromal cell exosome-enhanced regulatory T-cell production through an antigen-presenting cell-mediated pathway. Cytotherapy. 2018;20(5):687–96.

    Article  CAS  PubMed  Google Scholar 

  11. Fujii S, Miura Y, Fujishiro A, Shindo T, Shimazu Y, Hirai H, et al. Graft-versus-host disease amelioration by human bone marrow mesenchymal stromal/stem cell-derived extracellular vesicles is associated with peripheral preservation of naive T cell populations. Stem Cells. 2018;36(3):434–45.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinform. 2015;13(1):17–24.

    Article  CAS  Google Scholar 

  13. Danesh A, Inglis HC, Jackman RP, Wu S, Deng X, Muench MO, et al. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood. 2014;123(5):687–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chiva-Blanch G, Laake K, Myhre P, Bratseth V, Arnesen H, Solheim S, et al. Platelet-, monocyte-derived and tissue factor-carrying circulating microparticles are related to acute myocardial infarction severity. PLoS ONE. 2017;12(2):e0172558.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lanuti P, Santilli F, Marchisio M, Pierdomenico L, Vitacolonna E, Santavenere E, et al. A novel flow cytometric approach to distinguish circulating endothelial cells from endothelial microparticles: relevance for the evaluation of endothelial dysfunction. J Immunol Methods. 2012;380(1–2):16–22.

    Article  CAS  PubMed  Google Scholar 

  16. Oba R, Isomura M, Igarashi A, Nagata K. Circulating CD3(+)HLA-DR(+) Extracellular Vesicles as a Marker for Th1/Tc1-Type Immune Responses. J Immunol Res. 2019;2019:6720819.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bolanos-Meade J, Vogelsang GB. Acute graft-versus-host disease. Clin Adv Hematol Oncol. 2004;2(10):672–82.

    PubMed  Google Scholar 

  18. Nimer SD, Giorgi J, Gajewski JL, Ku N, Schiller GJ, Lee K, et al. Selective depletion of CD8+ cells for prevention of graft-versus-host disease after bone marrow transplantation. A randomized controlled trial. Transplantation. 1994;57(1):82–7.

    Article  CAS  PubMed  Google Scholar 

  19. Champlin RE, Passweg JR, Zhang MJ, Rowlings PA, Pelz CJ, Atkinson KA, et al. T-cell depletion of bone marrow transplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood. 2000;95(12):3996–4003.

    CAS  PubMed  Google Scholar 

  20. Kobayashi S, Imamura M, Hashino S, Tanaka J, Asaka M. Clinical relevance of serum soluble interleukin-2 receptor levels in acute and chronic graft-versus-host disease. Leuk Lymphoma. 1997;28(1–2):159–69.

    Article  CAS  PubMed  Google Scholar 

  21. Grimm J, Zeller W, Zander AR. Soluble interleukin-2 receptor serum levels after allogeneic bone marrow transplantations as a marker for GVHD. Bone Marrow Transpl. 1998;21(1):29–32.

    Article  CAS  Google Scholar 

  22. Kami M, Matsumura T, Tanaka Y, Mikami Y, Miyakoshi S, Ueyama J, et al. Serum levels of soluble interleukin-2 receptor after bone marrow transplantation: a true marker of acute graft-versus-host disease. Leuk Lymphoma. 2000;38(5–6):533–40.

    Article  CAS  PubMed  Google Scholar 

  23. Einsele H, Ehninger G, Hebart H, Weber P, Dette S, Link H, et al. Incidence of local CMV infection and acute intestinal GVHD in marrow transplant recipients with severe diarrhoea. Bone Marrow Transpl. 1994;14(6):955–63.

    CAS  Google Scholar 

  24. Sun YQ, Xu LP, Han TT, Zhang XH, Wang Y, Han W, et al. Detection of human cytomegalovirus (CMV) DNA in feces has limited value in predicting CMV enteritis in patients with intestinal graft-versus-host disease after allogeneic stem cell transplantation. Transpl Infect Dis. 2015;17(5):655–61.

    Article  CAS  PubMed  Google Scholar 

  25. Nishida T, Hamaguchi M, Hirabayashi N, Haneda M, Terakura S, Atsuta Y, et al. Intestinal thrombotic microangiopathy after allogeneic bone marrow transplantation: a clinical imitator of acute enteric graft-versus-host disease. Bone Marrow Transpl. 2004;33(11):1143–50.

    Article  CAS  Google Scholar 

  26. Zeisbrich M, Becker N, Benner A, Radujkovic A, Schmitt K, Beimler J, et al. Transplant-associated thrombotic microangiopathy is an endothelial complication associated with refractoriness of acute GvHD. Bone Marrow Transpl. 2017;52(10):1399–405.

    Article  CAS  Google Scholar 

  27. Hara H, Ohdan H, Tashiro H, Itamoto T, Tanaka Y, Mizunuma K, et al. Differential diagnosis between graft-versus-host disease and hemophagocytic syndrome after living-related liver transplantation by mixed lymphocyte reaction assay. J Invest Surg. 2004;17(4):197–202.

    Article  PubMed  Google Scholar 

  28. Nagasawa M, Ohkawa T, Endo A, Mitsuiki N, Ono T, Aoki Y, et al. Early coagulation disorder after allogeneic stem cell transplantation is a strong prognostic factor for transplantation-related mortality, and intervention with recombinant human thrombomodulin improves the outcome: a single-center experience. Int J Hematol. 2013;98(5):533–42.

    Article  CAS  PubMed  Google Scholar 

  29. Nishiwaki S, Nakayama T, Murata M, Nishida T, Sugimoto K, Saito S, et al. Dexamethasone palmitate successfully attenuates hemophagocytic syndrome after allogeneic stem cell transplantation: macrophage-targeted steroid therapy. Int J Hematol. 2012;95(4):428–33.

    Article  CAS  PubMed  Google Scholar 

  30. Ogawa K, Takamori Y, Suzuki K, Nagasawa M, Takano S, Kasahara Y, et al. Granulysin in human serum as a marker of cell-mediated immunity. Eur J Immunol. 2003;33(7):1925–33.

    Article  CAS  PubMed  Google Scholar 

  31. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA, et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation. 1974;18(4):295–304.

    Article  CAS  PubMed  Google Scholar 

  32. Spitzer TR. Engraftment syndrome following hematopoietic stem cell transplantation. Bone Marrow Transpl. 2001;27(9):893–8.

    Article  CAS  Google Scholar 

  33. Nagasawa M, Mitsuiki N, Endo A, Aoki Y, Ono T, Isoda T, et al. Sequential virus monitoring of pediatric patients with hematopoietic stem cell transplantation by multiplex PCR method. Transpl Open. 2016;1(1):17–24.

    Google Scholar 

  34. Nagasawa M, Mitsuiki N, Aoki Y, Ono T, Isoda T, Imai K, et al. Effect of reduced-intensity conditioning and the risk of late-onset non-infectious pulmonary complications in pediatric patients. Eur J Haematol. 2017;99(6):525–31.

    Article  CAS  PubMed  Google Scholar 

  35. Nagasawa M, Isoda T, Itoh S, Kajiwara M, Morio T, Shimizu N, et al. Analysis of serum granulysin in patients with hematopoietic stem-cell transplantation: its usefulness as a marker of graft-versus-host reaction. Am J Hematol. 2006;81(5):340–8.

    Article  CAS  PubMed  Google Scholar 

  36. Garin L, Rigal D, el Marsafy S, Bernaud J, Philippe N, Souillet G. A high percentage of HLA-DQ+ and HLA-DR+ mononuclear cells is associated with a low incidence of acute graft-versus-host disease after allogeneic bone marrow transplantation (BMT) in children. Clin Exp Immunol. 1994;96(2):344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soiffer RJ, Gonin R, Murray C, Robertson MJ, Cochran K, Chartier S, et al. Prediction of graft-versus-host disease by phenotypic analysis of early immune reconstitution after CD6-depleted allogeneic bone marrow transplantation. Blood. 1993;82(7):2216–23.

    Article  CAS  PubMed  Google Scholar 

  38. Boieri M, Shah P, Jalapothu D, Zaitseva O, Walter L, Rolstad B, et al. Rat acute GvHD is Th1 driven and characterized by predominant donor CD4(+) T-cell infiltration of skin and gut. Exp Hematol. 2017;50(33–45):e3.

    Google Scholar 

  39. Cahill RA, Spitzer TR, Mazumder A. Marrow engraftment and clinical manifestations of capillary leak syndrome. Bone Marrow Transpl. 1996;18(1):177–84.

    CAS  Google Scholar 

  40. Allen CE, Yu X, Kozinetz CA, McClain KL. Highly elevated ferritin levels and the diagnosis of hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2008;50(6):1227–35.

    Article  PubMed  Google Scholar 

  41. Zhang L, Zhang S, Xu J, Hu Y, Wang L, Zhang X, et al. Significance of soluble interleukin-2 receptor in patients with hemophagocytic lymphohistiocytosis. Leuk Lymphoma. 2011;52(7):1360–2.

    Article  CAS  PubMed  Google Scholar 

  42. Lin M, Park S, Hayden A, Giustini D, Trinkaus M, Pudek M, et al. Clinical utility of soluble interleukin-2 receptor in hemophagocytic syndromes: a systematic scoping review. Ann Hematol. 2017;96(8):1241–51.

    Article  CAS  PubMed  Google Scholar 

  43. Nagasawa M, Ogawa K, Imashuku S, Mizutani S. Serum granulysin is elevated in patients with hemophagocytic lymphohistiocytosis. Int J Hematol. 2007;86(5):470–3.

    Article  CAS  PubMed  Google Scholar 

  44. Yi T, Chen Y, Wang L, Du G, Huang D, Zhao D, et al. Reciprocal differentiation and tissue-specific pathogenesis of Th1, Th2, and Th17 cells in graft-versus-host disease. Blood. 2009;114(14):3101–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fujino M, Kim Y, Ito M. Intestinal thrombotic microangiopathy induced by FK506 in rats. Bone Marrow Transpl. 2007;39(6):367–72.

    Article  CAS  Google Scholar 

  46. Yamada-Fujiwara M, Miyamura K, Fujiwara T, Tohmiya Y, Endo K, Onishi Y, et al. Diagnosis of intestinal graft-versus-host disease and thrombotic microangiopathy after allogeneic stem cell transplantation. Tohoku J Exp Med. 2012;227(1):31–7.

    Article  PubMed  Google Scholar 

  47. Kilpinen L, Tigistu-Sahle F, Oja S, Greco D, Parmar A, Saavalainen P, et al. Aging bone marrow mesenchymal stromal cells have altered membrane glycerophospholipid composition and functionality. J Lipid Res. 2013;54(3):622–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringner M, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA. 2013;110(18):7312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Teshima T, Ordemann R, Reddy P, Gagin S, Liu C, Cooke KR, et al. Acute graft-versus-host disease does not require alloantigen expression on host epithelium. Nat Med. 2002;8(6):575–81.

    Article  CAS  PubMed  Google Scholar 

  50. Blazar BR, Murphy WJ, Abedi M. Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol. 2012;12(6):443–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Smolen JS, Aletaha D. Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat Rev Rheumatol. 2015;11(5):276–89.

    Article  PubMed  Google Scholar 

  52. Trouw LA, Pickering MC, Blom AM. The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol. 2017;13(9):538–47.

    Article  CAS  PubMed  Google Scholar 

  53. Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate all of the staff at the Tokyo Medical and Dental University Hospital who were involved in the medical care of patients with SCT. This work was partly supported by a Grant-in-Aid for Scientific Research (KAKENHI) Grant Number 15K09639 to M.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Nagasawa.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12185_2021_3113_MOESM1_ESM.pptx

SUPPLEMENTAL FIGURE 1: Correlation of three EVs with CD3+CD4+, CD3+CD8+, and CD3+HLA-DR+ lymphocyte counts. The relation of CD3+CD4+ EVs (A, B, C), CD3+CD8+ EVs (D, E, F), and CD3+HLA-DR+ EVs (G, H, I) with CD3+CD4+ (A, D, G), CD3+CD8+ (B, E, H), and CD3+HLA-DR+ (C, F, I) lymphocyte counts was analyzed. The relation of CD3+HLD-DR+ EVs with CD3+HLA-DR+ lymphocyte counts in patients with (K) or without GVHD (J) was also analyzed. Correlation coefficient (r) is shown in the graph; SUPPLEMENTAL FIGURE 2: Correlation of CD3+HLA-DR+ EVs with leukocyte subsets and correlation between three T-cell-derived EVs. The relation of CD3+HLD-DR+EVs with CD3+lymphocyte (A), total lymphocyte (B), monocyte (C), B cell (D), NK cell (E), and white blood cell (F) counts was analyzed. The relation of CD3+HLD-DR+EVs with CD3+CD4+EVs (G), CD3+HLD-DR+EVs with CD3+CD8+EVs (H), and of CD3+CD4+EVs with CD3+CD4+EVs (I) was also analyzed. Correlation coefficient (r) is shown in the graph; SUPPLEMENTAL FIGURE 3: Correlation of CD3+HLD-DR+EVs with conventional GVHD markers. The relation of CD3+HLD-DR+EVs with conventional GVHD markers, sIL-2R (A), ferritin (B), D-dimer (C), and granulysin (D) was analyzed. Correlation coefficient (r) is shown in the graph. (PPTX 9412 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagasawa, M., Mitsuiki, N., Yanagimachi, M. et al. Utility of novel T-cell-specific extracellular vesicles in monitoring and evaluation of acute GVHD. Int J Hematol 113, 910–920 (2021). https://doi.org/10.1007/s12185-021-03113-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-021-03113-x

Keywords

Navigation