Skip to main content
Log in

High serum levels of extracellular vesicles expressing malignancy-related markers are released in patients with various types of hematological neoplastic disorders

  • Research Article
  • Published:
Tumor Biology

Abstract

Many cell types release extracellular vesicles (EVs), including exosomes, microvesicles (MVs), and apoptotic bodies, which play a role in physiology and diseases. Presence and phenotype of circulating EVs in hematological malignancies (HMs) remain largely unexplored.

The aim of this study was to characterize EVs in peripheral blood of HM patients compared to healthy subjects (controls). We isolated serum EVs from patients with chronic lymphocytic leukemia (CLL), non-Hodgkin’s lymphoma (NHL), Waldenstrom’s macroglobulinemia (WM), Hodgkin’s lymphoma (HL), multiple myeloma (MM), acute myeloid leukemia (AML), myeloproliferative neoplasms (MPNs), myelodysplastic syndromes (MDS), and controls. EVs were isolated from serum of peripheral blood by ultracentrifuge steps and analyzed by flow cytometry to define count, size, and immunophenotype. MV levels were significantly elevated in WM, HL, MM, AML, and some MPNs and, though at a lesser degree, in CLL and NHL as compared to healthy controls. HL, MM, and MPNs generated a population of MVs characterized by lower size (below 0.3 μm) when compared to controls. MVs from patients specifically expressed tumor-related antigens, such as CD19 in B cell neoplasms, CD38 in MM, CD13 in myeloid tumors, and CD30 in HL. Both total and antigen-specific count of MVs significantly correlated with different HM clinical features such as Rai stage in CLL, International Prognostic Scoring System in WM, International Staging System in MM, and clinical stage in HL. MVs may represent a novel biomarker in HMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vader P, Breakefield XO, Wood MJA. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med. 2014;20(7):385–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. El Andaloussi S, Mäger I, Breakefield XO, Wood MJA. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–57.

    Article  Google Scholar 

  3. Zocco D, Ferruzzi P, Cappello F, Kuo WP. Extracellular vesicles as shuttles of tumor biomarkers and anti-tumor drugs. Front Immunol. 2014;4:1–7.

    Google Scholar 

  4. Julich H, Willms A, Lukacs-Kornek V. Extracellular vesicle profiling and their use as potential disease specific biomarker. Front Immunol. 2014;5:1–7.

    Article  CAS  Google Scholar 

  5. Revenfeld ALS, Bæk R, Nielsen MH, Stensballe A, Varming K, Jørgensen M. Diagnostic and prognostic potential of extracellular vesicles in peripheral blood. Clin Ther. 2014;36(6):830–46.

    Article  PubMed  Google Scholar 

  6. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30(1):255–89.

    Article  CAS  PubMed  Google Scholar 

  7. Ratajczak J, Miekus K, Kucia M, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20(5):847–56.

    Article  CAS  PubMed  Google Scholar 

  8. Gatti S, Bruno S, Deregibus MC, et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant. 2011;26(5):1474–83.

    Article  CAS  PubMed  Google Scholar 

  9. Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–72.

    Article  CAS  PubMed  Google Scholar 

  10. Del Conde I. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005;106(5):1604–11.

    Article  PubMed  Google Scholar 

  11. Lee Y, EL Andaloussi S, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21(R1):R125–34.

    Article  CAS  PubMed  Google Scholar 

  12. Choi D-S, Kim D-K, Kim Y-K, Gho YS. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics. 2013;13(10–11):1554–71.

    Article  CAS  PubMed  Google Scholar 

  13. Thakur BK, Zhang H, Becker A, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Nat Publ Group. 2014;24(6):766–9.

    CAS  Google Scholar 

  14. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14(3):195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caby MP. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17(7):879–87.

    Article  CAS  PubMed  Google Scholar 

  16. Grant R, Ansa-Addo E, Stratton D, et al. A filtration-based protocol to isolate human plasma membrane-derived vesicles and exosomes from blood plasma. J Immunol Methods. 2011;371(1–2):143–51.

    Article  CAS  PubMed  Google Scholar 

  17. van der Meel R, Krawczyk-Durka M, van Solinge WW, Schiffelers RM. Toward routine detection of extracellular vesicles in clinical samples. Int J Lab Hematol. 2014;36(3):244–53.

    Article  PubMed  Google Scholar 

  18. Witwer KW, Buzás EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracellular Vesicles. 2013;2:18389.

    Article  Google Scholar 

  19. Dinkla S, Brock R, Joosten I, Bosman GJCGM. Gateway to understanding microparticles: standardized isolation and identification of plasma membrane-derived vesicles. Nanomedicine (Lond). 2013;8(10):1657–68.

    Article  CAS  Google Scholar 

  20. Shet AS. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood. 2003;102(7):2678–83.

    Article  CAS  PubMed  Google Scholar 

  21. Jayachandran M, Litwiller RD, Owen WG, et al. Characterization of blood borne microparticles as markers of premature coronary calcification in newly menopausal women. Am J Physiol Heart Circ Physiol. 2008;295(3):H931–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. George JN, Thoi LL, McManus LM, Reimann TA. Isolation of human platelet membrane microparticles from plasma and serum. Blood. 1982;60(4):834–40.

    CAS  PubMed  Google Scholar 

  23. van der Vlist EJ, Nolte-‘t Hoen ENM, Stoorvogel W, Arkesteijn GJA, Wauben MHM. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc. 2012;7(7):1311–26.

    Article  PubMed  Google Scholar 

  24. Lacroix R, Robert S, Poncelet P, et al. Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC collaborative workshop. J Thromb Haemost. 2010;8(11):2571–4.

    Article  CAS  PubMed  Google Scholar 

  25. Lacroix R, Judicone C, Poncelet P, et al. Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost. 2012;10(3):437–46.

    Article  CAS  PubMed  Google Scholar 

  26. Van Der Pol E, Van Gemert M, Sturk A, Nieuwland R, Van Leeuwen T. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost. 2012;10(5):919–30.

  27. Connor DE, Exner T, Ma DDF, Joseph JE. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb Haemost. 2010;103(5):1044–52.

    Article  CAS  PubMed  Google Scholar 

  28. Rooney IA, Atkinson JP, Krul ES, et al. Physiologic relevance of the membrane attack complex inhibitory protein CD59 in human seminal plasma: CD59 is present on extracellular organelles (prostasomes), binds cell membranes, and inhibits complement-mediated lysis. J Exp Med. 1993;177(5):1409–20.

    Article  CAS  PubMed  Google Scholar 

  29. Clayton A, Harris CL, Court J, Mason MD, Morgan BP. Antigen‐presenting cell exosomes are protected from complement‐mediated lysis by expression of CD55 and CD59. Eur J Immunol. 2003;33(2):522–31.

    Article  CAS  PubMed  Google Scholar 

  30. Gyorgy B, Modos K, Pallinger E, et al. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood. 2011;117(4):e39–48.

    Article  CAS  PubMed  Google Scholar 

  31. György B, Pálóczi K, Kovács A, et al. Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube. Thromb Res. 2014;133(2):285–92.

    Article  PubMed  Google Scholar 

  32. Fleitas T, Martínez-Sales V, Vila V, et al. Circulating endothelial cells and microparticles as prognostic markers in advanced non-small cell lung cancer. PLoS ONE. 2012;7(10):e47365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nozaki T, Sugiyama S, Sugamura K, et al. Prognostic value of endothelial microparticles in patients with heart failure. Eur J Heart Fail. 2014;12(11):1223–8.

    Article  Google Scholar 

  34. Schmelzle M, Splith K, Andersen LW, et al. Increased plasma levels of microparticles expressing CD39 and CD133 in acute liver injury. Transplant J. 2013;95(1):63–9.

    Article  CAS  Google Scholar 

  35. Sinning JM, Losch J, Walenta K, Bohm M, Nickenig G, Werner N. Circulating CD31+/annexin V+ microparticles correlate with cardiovascular outcomes. Eur Heart J. 2011;32(16):2034–41.

    Article  CAS  PubMed  Google Scholar 

  36. Dragovic RA, Southcombe JH, Tannetta DS, Redman CWG, Sargent IL. Multicolor flow cytometry and nanoparticle tracking analysis of extracellular vesicles in the plasma of normal pregnant and pre-eclamptic women. Biol Reprod. 2013;89(6):151.

    Article  PubMed  Google Scholar 

  37. Van Aalderen M, Trappenburg M, Van Schilfgaarde M, et al. Procoagulant myeloblast-derived microparticles in AML patients: changes in numbers and thrombin generation potential during chemotherapy. J Thromb Haemost. 2011;9(1):223–6.

    Article  PubMed  Google Scholar 

  38. Ayers L, Kohler M, Harrison P, et al. Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay. Thromb Res. 2011;127(4):370–7.

    Article  CAS  PubMed  Google Scholar 

  39. Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D, Kay NE. Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood. 2010;115(9):1755–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Auwerda JJA, Yuana Y, Osanto S, et al. Microparticle-associated tissue factor activity and venous thrombosis in multiple myeloma. Thromb Haemost. 2011;105(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  41. Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-1. Haematologica. 2011;96(9):1302–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dey-Hazra E, Hertel B, Kirsch T, et al. Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing. VHRM. 2010;6:1125–33.

    Google Scholar 

  43. Jy W, Horstman LL, Jimenez JJ, et al. Measuring circulating cell-derived microparticles. J Thromb Haemost. 2004;2(10):1842–51.

    Article  CAS  PubMed  Google Scholar 

  44. Jimenez JJ, Jy W, Mauro LM, Soderland C, Horstman LL, Ahn YS. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res. 2003;109(4):175–80.

    Article  CAS  PubMed  Google Scholar 

  45. Abid Hussein MN, Meesters EW, Osmanovic N, Romijn FPHTM, Nieuwland R, Sturk A. Antigenic characterization of endothelial cell‐derived microparticles and their detection ex vivo. J Thromb Haemost. 2003;1(11):2434–43.

    Article  CAS  PubMed  Google Scholar 

  46. Berardi S, Caivano A, Ria R, et al. Four proteins governing overangiogenic endothelial cell phenotype in patients with multiple myeloma are plausible therapeutic targets. Oncogene. 2012;31(18):2258–69.

    Article  CAS  PubMed  Google Scholar 

  47. Terpos E, Tasidou A, Kastritis E, et al. Angiogenesis in waldenstrãm's macroglobulinemia. Clin Lymphoma Myeloma. 2011;9(1):46–9.

    Article  Google Scholar 

  48. Marinaccio C, Nico B, Maiorano E, Specchia G, Ribatti D. Insights in hodgkin lymphoma angiogenesis. Leuk Res. 2014;38(8):857–61.

    Article  CAS  PubMed  Google Scholar 

  49. Cooper LJN, Al-Kadhimi Z, DiGiusto D, et al. Development and application of CD19-specific T cells for adoptive immunotherapy of B cell malignancies. Blood Cell Mol Dis. 2004;33(1):83–9.

    Article  CAS  Google Scholar 

  50. Konoplev S, Medeiros LJ, Bueso-Ramos CE, Jorgensen JL, Lin P. Immunophenotypic profile of lymphoplasmacytic lymphoma/waldenström macroglobulinemia. Am J Clin Pathol. 2005;124(3):414–20.

    Article  PubMed  Google Scholar 

  51. Paiva B, Montes MC, a-Sanz RGI, et al. Multiparameter flow cytometry for the identification of the waldenstrom's clone in IgM-MGUS and waldenström macroglobulinemia: new criteria for differential diagnosis and risk stratification. Leukemia. 2013;28(1):166–73.

    Article  PubMed  Google Scholar 

  52. Domnikova NP, Dolgikh TY, Sholenberg EV, et al. Blood microvesicles during chronic lymphoproliferative diseases. Bull Exp Biol Med. 2013;156(1):94–7.

    Article  CAS  PubMed  Google Scholar 

  53. Nijhof IS, Groen RWJ, Noort WA, et al. Preclinical evidence for the therapeutic potential of CD38-targeted immuno-chemotherapy in multiple myeloma patients refractory to lenalidomide and bortezomib. Clin Cancer Res. 2015;21(12):2802–10.

    Article  CAS  PubMed  Google Scholar 

  54. Arendt BK, Walters DK, Wu X, Tschumper RC, Jelinek DF. Multiple myeloma dell-derived microvesicles are enriched in CD147 expression and enhance tumor cell proliferation. Oncotarget. 2014;5(14):5686–99.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Küppers R, Engert A, Hansmann M-L. Hodgkin lymphoma. J Clin Invest. 2012;122(10):3439–47.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hansen HP, Engels H-M, Dams M, et al. Protrusion-guided extracellular vesicles mediate CD30 trans-signalling in the microenvironment of Hodgkin's lymphoma. J Pathol. 2014;232(4):405–14.

    Article  CAS  PubMed  Google Scholar 

  57. Nadali G, Tavecchia L, Zanolin E, et al. Serum level of the soluble form of the CD30 molecule identifies patients with Hodgkin’s disease at high risk of unfavorable outcome. Blood. 1998;91(8):3011–6.

    CAS  PubMed  Google Scholar 

  58. Blanc V, Bousseau A, Caron A, Carrez C, Lutz RJ, Lambert JM. SAR3419: An anti-CD19-maytansinoid immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res. 2011;17(20):6448–58.

    Article  CAS  PubMed  Google Scholar 

  59. Dahle J, Repetto-Llamazares AHV, Mollatt CS, et al. Evaluating antigen targeting and anti-tumor activity of a new anti-CD37 radioimmunoconjugate against non-Hodgkin’s lymphoma. Anticancer Res. 2013;33(1):85–95.

    CAS  PubMed  Google Scholar 

  60. Oksvold MP, Kullmann A, Forfang L, et al. Expression of B-Cell surface antigens in subpopulations of exosomes released from B-Cell lymphoma cells. Clin Ther. 2014;36(6):847–862.e1.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was partially supported by Current Research Funds, Italian Ministry of Health.

No writing assistance was utilized in the production of this manuscript.

Compliance with ethical standards

During the entire investigation period, we followed guidelines and regulations of the Helsinki Declaration, and experiments were approved by the Ethics Committee of IRCCS-CROB (Prot 3 725; 7-2-2008). All patients and controls signed an informed consent form.

Conflicts of interest

No conflicts of interest were declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Caivano.

Additional information

Pellegrino Musto and Luigi Del Vecchio contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM. 1

(XLS 13 kb)

ESM. 2

(PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caivano, A., Laurenzana, I., De Luca, L. et al. High serum levels of extracellular vesicles expressing malignancy-related markers are released in patients with various types of hematological neoplastic disorders. Tumor Biol. 36, 9739–9752 (2015). https://doi.org/10.1007/s13277-015-3741-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3741-3

Keywords

Navigation