Skip to main content

Advertisement

Log in

Transcriptional heterogeneity of clonal plasma cells and immune evasion in immunoglobulin light chain amyloidosis

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Immunoglobulin light chain amyloidosis (AL amyloidosis) is characterized by the presence of B cells producing amyloidogenic immunoglobulin light chains (LCs). The low frequency of aberrant B cells in AL is often masked by a polyclonal B cell background, making it difficult for treatment. We analyzed the single-cell RNA sequencing data from GEO database to compare the plasma cell (PCs) in four individuals with AL amyloidosis, one AL subject after treatment, and six healthy controls. High interindividual variability in AL-derived PCs in their expression pattern of known overexpressed genes in multiple myeloma and their usage of V regions in LCs was demonstrated. We also found overexpression of MHC class I molecules as one of the common features of clonal PCs in individuals with AL amyloidosis. Significantly reduced frequencies of circulating natural killer (NK) cells were also observed in a small cohort of AL patients when compared to healthy controls. These data demonstrate that aberrant PCs in AL has a highly diverse transcriptome, an upregulation of MHC, and a dampened capability of immunosurveillance by reduction of circulating NK frequencies. The analysis of clonal PCs at single cell level may provide a better approach for precise molecular profiling and diagnosis of AL amyloidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AL:

Immunoglobulin light chain

BM:

Bone marrow

DEG:

Differentially expressed gene

ER:

Endoplasmic reticulum

LC:

Light chain

MGUS:

Monoclonal gammopathy of undetermined significance

MM:

Multiple myeloma

NK:

Natural killer

PC:

Plasma cell

scRNA-seq:

Single-cell RNA sequencing

UMAP:

Uniform manifold approximation and projection

References

  1. Merlini G, Dispenzieri A, Sanchorawala V, Schonland SO, Palladini G, Hawkins PN, et al. Systemic immunoglobulin light chain amyloidosis. Nat Rev Dis Primers. 2018;4(1):38.

    PubMed  Google Scholar 

  2. Merlini G. CyBorD: stellar response rates in AL amyloidosis. Blood. 2012;119(19):4343–5.

    CAS  PubMed  Google Scholar 

  3. Mikhael JR, Schuster SR, Jimenez-Zepeda VH, Bello N, Spong J, Reeder CB, et al. Cyclophosphamide-bortezomib-dexamethasone (CyBorD) produces rapid and complete hematologic response in patients with AL amyloidosis. Blood. 2012;119(19):4391–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Abraham RS, Ballman KV, Dispenzieri A, Grill DE, Manske MK, Price-Troska TL, et al. Functional gene expression analysis of clonal plasma cells identifies a unique molecular profile for light chain amyloidosis. Blood. 2005;105(2):794–803.

    CAS  PubMed  Google Scholar 

  5. Bochtler T, Hegenbart U, Heiss C, Benner A, Moos M, Seckinger A, et al. Hyperdiploidy is less frequent in AL amyloidosis compared with monoclonal gammopathy of undetermined significance and inversely associated with translocation t(11;14). Blood. 2011;117(14):3809–15.

    CAS  PubMed  Google Scholar 

  6. Paiva B, Martinez-Lopez J, Corchete LA, Sanchez-Vega B, Rapado I, Puig N, et al. Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis. Blood. 2016;127(24):3035–9.

    CAS  PubMed  Google Scholar 

  7. Kufova Z, Sevcikova T, Growkova K, Vojta P, Filipova J, Adam Z, et al. Biomarkers in immunoglobulin light chain amyloidosis. Klin Onkol. 2017;30(Supplementum2):60–7.

    CAS  PubMed  Google Scholar 

  8. Ledergor G, Weiner A, Zada M, Wang SY, Cohen YC, Gatt ME, et al. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nat Med. 2018;24(12):1867–76.

    CAS  PubMed  Google Scholar 

  9. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. comprehensive integration of single-cell data. Cell. 2019;177(7):1888–902e21.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. da Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.

    Google Scholar 

  11. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.

    CAS  Google Scholar 

  12. Merlini G, Stone MJ. Dangerous small B-cell clones. Blood. 2006;108(8):2520–30.

    CAS  PubMed  Google Scholar 

  13. Paiva B, Puig N, Cedena MT, de Jong BG, Ruiz Y, Rapado I, et al. Differentiation stage of myeloma plasma cells: biological and clinical significance. Leukemia. 2017;31(2):382–92.

    CAS  PubMed  Google Scholar 

  14. Halliley JL, Tipton CM, Liesveld J, Rosenberg AF, Darce J, Gregoretti IV, et al. Long-lived plasma cells are contained within the CD19(-)CD38(hi)CD138(+) subset in human bone marrow. Immunity. 2015;43(1):132–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cenci S, Mezghrani A, Cascio P, Bianchi G, Cerruti F, Fra A, et al. Progressively impaired proteasomal capacity during terminal plasma cell differentiation. EMBO J. 2006;25(5):1104–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jourdan M, Reme T, Goldschmidt H, Fiol G, Pantesco V, De Vos J, et al. Gene expression of anti- and pro-apoptotic proteins in malignant and normal plasma cells. Br J Haematol. 2009;145(1):45–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kryukov F, Kryukova E, Brozova L, Kufova Z, Filipova J, Growkova K, et al. Does AL amyloidosis have a unique genomic profile? Gene expression profiling meta-analysis and literature overview. Gene. 2016;591(2):490–8.

    CAS  PubMed  Google Scholar 

  18. Zhou P, Hoffman J, Landau H, Hassoun H, Iyer L, Comenzo RL. Clonal plasma cell pathophysiology and clinical features of disease are linked to clonal plasma cell expression of cyclin D1 in systemic light-chain amyloidosis. Clin Lymphoma Myeloma Leuk. 2012;12(1):49–58.

    CAS  PubMed  Google Scholar 

  19. Fathallah-Shaykh H, Wolf S, Wong E, Posner JB, Furneaux HM. Cloning of a leucine-zipper protein recognized by the sera of patients with antibody-associated paraneoplastic cerebellar degeneration. Proc Natl Acad Sci U S A. 1991;88(8):3451–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiu Z, Sun W, Gao S, Zhou H, Tan W, Cao M, et al. A 16-gene signature predicting prognosis of patients with oral tongue squamous cell carcinoma. PeerJ. 2017;5:e4062.

    PubMed  PubMed Central  Google Scholar 

  21. Li S, Yang F, Yang YK, Zhou Y. Increased expression of ecotropic viral integration site 2A indicates a poor prognosis and promotes osteosarcoma evolution through activating MEK/ERK pathway. J Recept Signal Transduct Res. 2019;39(4):368–72.

    CAS  PubMed  Google Scholar 

  22. Yang X, Cao W, Zhang L, Zhang W, Zhang X, Lin H. Targeting 14-3-3zeta in cancer therapy. Cancer Gene Ther. 2012;19(3):153–9.

    PubMed  Google Scholar 

  23. Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM, et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet. 1997;16(3):260–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Richelda R, Ronchetti D, Baldini L, Cro L, Viggiano L, Marzella R, et al. A novel chromosomal translocation t(4; 14)(p16.3; q32) in multiple myeloma involves the fibroblast growth-factor receptor 3 gene. Blood. 1997;90(10):4062–70.

    CAS  PubMed  Google Scholar 

  25. Keats JJ, Maxwell CA, Taylor BJ, Hendzel MJ, Chesi M, Bergsagel PL, et al. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood. 2005;105(10):4060–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Russignan A, Spina C, Tamassia N, Cassaro A, Rigo A, Bagnato A, et al. Endothelin-1 receptor blockade as new possible therapeutic approach in multiple myeloma. Br J Haematol. 2017;178(5):781–93.

    CAS  PubMed  Google Scholar 

  27. Slany A, Haudek-Prinz V, Meshcheryakova A, Bileck A, Lamm W, Zielinski C, et al. Extracellular matrix remodeling by bone marrow fibroblast-like cells correlates with disease progression in multiple myeloma. J Proteome Res. 2014;13(2):844–54.

    CAS  PubMed  Google Scholar 

  28. Raninga PV, Di Trapani G, Vuckovic S, Bhatia M, Tonissen KF. Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma. Oncotarget. 2015;6(17):15410–24.

    PubMed  PubMed Central  Google Scholar 

  29. Li PP, Feng LL, Chen N, Ge XL, Lv X, Lu K, et al. Metadherin contributes to the pathogenesis of chronic lymphocytic leukemia partially through Wnt/beta-catenin pathway. Med Oncol. 2015;32(2):479.

    PubMed  Google Scholar 

  30. Ge X, Lv X, Feng L, Liu X, Gao J, Chen N, et al. Metadherin contributes to the pathogenesis of diffuse large B-cell lymphoma. PLoS ONE. 2012;7(6):e39449.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Myngbay A, Bexeitov Y, Adilbayeva A, Assylbekov Z, Yevstratenko BP, Aitzhanova RM, et al. CTHRC1: a new candidate biomarker for improved rheumatoid arthritis diagnosis. Front Immunol. 2019;10:1353.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Blackburn TE, Santiago T, Burrows PD. FCRLA—a resident endoplasmic reticulum protein that associates with multiple immunoglobulin isotypes in B lineage cells. Curr Top Microbiol Immunol. 2017;408:47–65.

    PubMed  Google Scholar 

  33. Comenzo RL, Zhang Y, Martinez C, Osman K, Herrera GA. The tropism of organ involvement in primary systemic amyloidosis: contributions of Ig V(L) germ line gene use and clonal plasma cell burden. Blood. 2001;98(3):714–20.

    CAS  PubMed  Google Scholar 

  34. Perfetti V, Casarini S, Palladini G, Vignarelli MC, Klersy C, Diegoli M, et al. Analysis of V(lambda)-J(lambda) expression in plasma cells from primary (AL) amyloidosis and normal bone marrow identifies 3r (lambdaIII) as a new amyloid-associated germline gene segment. Blood. 2002;100(3):948–53.

    CAS  PubMed  Google Scholar 

  35. Abraham RS, Geyer SM, Price-Troska TL, Allmer C, Kyle RA, Gertz MA, et al. Immunoglobulin light chain variable (V) region genes influence clinical presentation and outcome in light chain-associated amyloidosis (AL). Blood. 2003;101(10):3801–8.

    CAS  PubMed  Google Scholar 

  36. Kourelis TV, Dasari S, Theis JD, Ramirez-Alvarado M, Kurtin PJ, Gertz MA, et al. Clarifying immunoglobulin gene usage in systemic and localized immunoglobulin light-chain amyloidosis by mass spectrometry. Blood. 2017;129(3):299–306.

    CAS  PubMed  Google Scholar 

  37. Perfetti V, Palladini G, Casarini S, Navazza V, Rognoni P, Obici L, et al. The repertoire of lambda light chains causing predominant amyloid heart involvement and identification of a preferentially involved germline gene, IGLV1-44. Blood. 2012;119(1):144–50.

    CAS  PubMed  Google Scholar 

  38. Kim HK, Bhattarai KR, Junjappa RP, Ahn JH, Pagire SH, Yoo HJ, et al. TMBIM6/BI-1 contributes to cancer progression through assembly with mTORC2 and AKT activation. Nat Commun. 2020;11(1):4012.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huiting LN, Samaha Y, Zhang GL, Roderick JE, Li B, Anderson NM, et al. UFD1 contributes to MYC-mediated leukemia aggressiveness through suppression of the proapoptotic unfolded protein response. Leukemia. 2018;32(11):2339–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nguyen N, Olivas TJ, Mires A, Jin J, Yu S, Luan L, et al. The insufficiency of ATG4A in macroautophagy. J Biol Chem. 2020. https://doi.org/10.1074/jbc.RA120.013897.

    Article  PubMed  PubMed Central  Google Scholar 

  41. van Galen P, Kreso A, Mbong N, Kent DG, Fitzmaurice T, Chambers JE, et al. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature. 2014;510(7504):268–72.

    PubMed  Google Scholar 

  42. Dubovsky JA, Chappell DL, Harrington BK, Agrawal K, Andritsos LA, Flynn JM, et al. Lymphocyte cytosolic protein 1 is a chronic lymphocytic leukemia membrane-associated antigen critical to niche homing. Blood. 2013;122(19):3308–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gerlach JP, Jordens I, Tauriello DVF, van’t Land-Kuper I, Bugter JM, Noordstra I, et al. TMEM59 potentiates Wnt signaling by promoting signalosome formation. Proc Natl Acad Sci U S A. 2018;115(17):3996–4005.

    Google Scholar 

  44. Landego I, Jayachandran N, Wullschleger S, Zhang TT, Gibson IW, Miller A, et al. Interaction of TAPP adapter proteins with phosphatidylinositol (3,4)-bisphosphate regulates B-cell activation and autoantibody production. Eur J Immunol. 2012;42(10):2760–70.

    CAS  PubMed  Google Scholar 

  45. Nagasawa K, Higashi T, Hosokawa N, Kaufman RJ, Nagata K. Simultaneous induction of the four subunits of the TRAP complex by ER stress accelerates ER degradation. EMBO Rep. 2007;8(5):483–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ben-Shmuel A, Biber G, Barda-Saad M. Unleashing natural killer cells in the tumor microenvironment—the next generation of immunotherapy? Front Immunol. 2020;11:275.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kourelis TV, Kumar SK, Gertz MA, Lacy MQ, Buadi FK, Hayman SR, et al. Coexistent multiple myeloma or increased bone marrow plasma cells define equally high-risk populations in patients with immunoglobulin light chain amyloidosis. J Clin Oncol. 2013;31(34):4319–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bernal M, Garrido P, Jimenez P, Carretero R, Almagro M, Lopez P, et al. Changes in activatory and inhibitory natural killer (NK) receptors may induce progression to multiple myeloma: implications for tumor evasion of T and NK cells. Hum Immunol. 2009;70(10):854–7.

    CAS  PubMed  Google Scholar 

  49. Ryu D, Kim SJ, Hong Y, Jo A, Kim N, Kim HJ, et al. Alterations in the transcriptional programs of myeloma cells and the microenvironment during extramedullary progression affect proliferation and immune evasion. Clin Cancer Res. 2020;26(4):935–44.

    CAS  PubMed  Google Scholar 

  50. Shi J, Tricot GJ, Garg TK, Malaviarachchi PA, Szmania SM, Kellum RE, et al. Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. Blood. 2008;111(3):1309–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Spaan I, Raymakers RA, van de Stolpe A, Peperzak V. Wnt signaling in multiple myeloma: a central player in disease with therapeutic potential. J Hematol Oncol. 2018;11(1):67.

    PubMed  PubMed Central  Google Scholar 

  52. van Andel H, Kocemba KA, Spaargaren M, Pals ST. Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options. Leukemia. 2019;33(5):1063–75.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key Research and Development Program of China (2017YFA0104500), the National Natural Science Foundation of China (91853202, J.L.; 32070897, 31671244, 31872734, Q.G.), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (81621001), Beijing Natural Science Foundation (7202079), the Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences, 2018PT31039.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and L.X. did all the experiments. Y.W. prepared Figs. 1, 2, 3, 4, L.X. prepared Fig. 5, Y.L., Y.H., Q.S., L.J., L.Y. provided essential help for all the data analysis, sample preparation, and detection. P.W., K.Z., X.H. provided critical opinion on data analysis and manuscript preparation. Q.G. and J.L. wrote the manuscript.

Corresponding authors

Correspondence to Qing Ge or Jin Lu.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 97 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xu, L., Liu, Y. et al. Transcriptional heterogeneity of clonal plasma cells and immune evasion in immunoglobulin light chain amyloidosis. Int J Hematol 113, 231–242 (2021). https://doi.org/10.1007/s12185-020-03016-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-020-03016-3

Keywords

Navigation